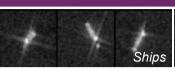
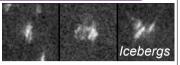
Data Augmentation via Mixed Class Interpolation using **Cycle-Consistent Generative Adversarial Networks Applied to Cross-Domain Imagery**

Hiroshi Sasaki, Chris G. Willcocks, Toby P. Breckon **Durham University**





Examples of non-visible imagery (Synthetic Aparture Radar images [1])

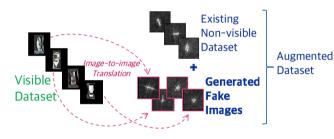
Issue

Limited availability of non-visible imagery poses a significant challenge in object detection, classification and recognition.

Approach

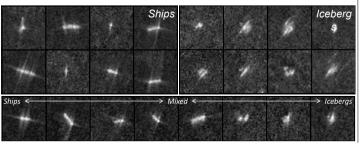
Conditional CycleGAN Mixup Augmentation (C2GMA)

(1) Increase non-visible datasets via image-to-image translation from visible datasets.



(2) Modify CycleGAN model to use conditional GAN and train the model with class labels to enable class-specific image synthesis.

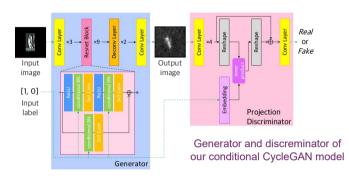
(3) Infer class-interpolated images using the trained conditional CycleGAN to improve mixup.



Examples of generated SAR ships, icebergs and class-interpolated images

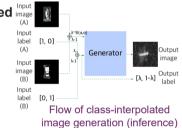
C2GMA Architecture & Training

- (1) Add the conditional batch normalization layer and the projection discriminator into CycleGAN.
- (2) Train the model using visible and non-visible images with one-hot class labels.



(3) Infer the class-interpolated images using the trained model and blended visible images / labels as input.

(4) Augment dataset with the generated non-visible images.



Evaluation

Task: SAR ships / icebergs classification via AlexNet [4] Benchmark Dataset: Variation of Statoil/C-CORE dataset [1]

Baseline: [BL] without data augmentation [ROT] BL + rotated images

[MIXUP] BL + Mixup [3]

[MIXCG] BL + MixCycleGAN [5]

	Average			
	A	P	R	Fl
BL	0.551 ± 0.142	0.562 ± 0.160	0.575 ± 0.130	0.568 ± 0.145
ROT	0.549 ± 0.137	0.554 ± 0.146	0.571 ± 0.124	0.562 ± 0.135
MIXUP [9]	0.715 ± 0.044	0.739 ± 0.051	0.719 ± 0.049	0.729 ± 0.050
MIXCG [27]	0.730 ± 0.048	0.752 ± 0.039	0.739 ± 0.045	0.745 ± 0.042
C2GMA (Ours)	0.754 ± 0.056	0.777 ± 0.042	0.762 ± 0.053	0.769 ± 0.047

Classification results: accuracy (A), precision (P), recall (R), and F1 scores (F1)

Conclusion

- A novel data augmentation for non-visible imagery:
 - Visible to non-visible image translation via class-conditioned CycleGAN-based method.
 - Trained model generates class-interpolated images improving mixup.
- · Outperforms other traditional data augmentation approaches on a SAR ship / iceberg classification task.
- Statoil/C-CORE Iceberg Classifier Challenge, https://www.kaggle.com/c/statoil-iceberg-classifier-challenge J. Zhu, et al "Unpaired image-to-image translation using cycle-consistent adversarial networks," ICCV, 2017. H. Zhang, et al "mixup: Beyond empirical risk minimization," ICLR, 2018.
- [3] H. Zhang, et al. "mixup: Beyond empirical risk minimization," ICLR, 2018.
 [4] A. Krizhevsky, et al, "Imagenet classification with deep convolutional neural networks," NeurIPS, 2012.
 [5] D. Liang, et al, "Understanding mixup training methods," IEEE Access, vol. 6, pp. 58 774–58 783, 2018.