
Abstract: Nowadays, in the area of autonomous driving, the computational power of the object detectors is limited by the embedded devices and the public datasets for autonomous driving are over-idealistic. In this paper, we propose a pipeline combining both block-wise pruning and channel-wise pruning to

compress the object detection model iteratively. We enforce the introduced factor of the residual blocks and the scale parameters in Batch Normalization (BN) layers to sparsity to select the less important residual blocks and channels. Moreover, a modified loss function has been proposed to remedy the class-

imbalance problem. After removing the unimportant structures iteratively, we get the pruned YOLOv3 trained on our datasets which have more abundant and elaborate classes. Evaluated by our validation sets on the server, the pruned YOLOv3 saves 79.7% floating point operations (FLOPs), 93.8% parameter size,

93.8% model volume and 45.4% inference times with only 4.16% mean of average precision (mAP) loss. Evaluated on the embedded device, the pruned model operates about 13 frames per second with 4.53% mAP loss. These results show that the real-time property and accuracy of the pruned YOLOv3 can meet the

needs of the embedded devices in complicated autonomous driving environments.
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1. Method

Fig. 1. The pipeline of model pruning. The block-wise pruning is performed iteratively and the channels are

pruned iteratively after each block-wise pruning.

For pruning the YOLOv3 model, both block-wise pruning and channel-wise pruning are performed

iteratively. The steps taken are shown in Fig.1.

1.1 Block-wise Pruning

As Fig.2 shows, a scale factor λ is added to 

multiply with the output of the residual block. 

The absolute value represents the 

importance of the block. We impose L1 

regularization term on λ and use fast iterative 

shrinkage-thresholding (FISTA) algorithm to 

obtain sparse λ. 

Fig. 2. Processing of YOLOv3 residual blocks. Every

residual block of the YOLOv3 model has two conv-bn-

relu groups.

Fig. 3. The distributions of λ with different after

sparsity training.

2. Experiments and Results

Fig. 5 The detection results of the original model and YOLOv3-2nd-block-pruning-2nd-channel-pruning model on

the embedded device

  

The importance of the residual blocks can 

be sorted according to      . The residual 

blocks with smaller      can be removed 

entirely. 

After pruning, the model should be fine-

tuned.

Fig.3 shows the distributions of   λ  with 

different     after sparsity training.  

1.2 Channel-wise Pruning

The absolute value in each BN layer can reflect

the importance of the channel. γ is also constrained

by the L1-norm penalty, and we use SGD to optimize

and get sparse gamma.

Fig.4. shows the distributions of the scale factors γ in

BN layers after channel-wise sparsity training with

different . Then we can remove the less important

channels according to the sorted sparse γ. After

pruning, the model should be fine-tuned.

Fig. 4. Distributions of the scale factors γ in BN layers after channel-wise sparsity training with

different .  

  

Fig. 5. Summary of our datasets. The histogram of each class

shows that the problem of class-imbalance still presents.

2.1 Dataset

The classes in the

datasets are defined as

‘Body of Express

Vehicle’, ‘Front of

Express Vehicle’, ‘Rear

of Express Vehicle’,

‘Body of Car’, ‘Front of

Car’, ‘Rear of Car’,

‘Body of SUV’, ‘Front of

SUV’, ‘Rear of SUV’,

‘Body of Minibus’,

‘Front of Minibus’, ‘Rear

of Minibus’, ‘Body of

Bus’, ‘Front of Bus’,

‘Rear of Bus’, ‘Body of

Truck’, ‘Front of Truck’,

‘Rear of Truck’,

‘Pedestrian’, ‘Bicyclist’,

‘Motorcyclist’ and

‘Tricyclist’.

The embedded device is a Xilinx® ZCU104 board with one B2304 core with 16 threads running at 330

MHz and DNNDK v3.0.

Deployed on the embedded device, he model can operate about 13 frames per second (FPS), which

meets the needs of actual autonomous driving. Compared with the original model on the server, the

mAP of the pruned model drops 4.53% of the mAP of the original model on the server.

There are 15,601 annotated static images including four kinds of scenes: freeway, urban

road, suburb and residential area. Furthermore, the datasets also cover the scenes under

poor illumination conditions such as the backlight scene.

original model on server    pruned model on embedded device 

2.2 Experiments and Results

The performance on the validation set of all models during iterative pruning. We choose YOLOv3-2nd-

block-pruning-2nd-channel-pruning model as the final results of the experiments. The final model save

79.7% FLOPs, reduce 93.8% parameter size, compress 93.8% model volumes as well as save 45.4%

inference times, with only 4.16% mAP declines.

TABLE I.  EVALUATION OF BASELINE MODEL AND PRUNED MODELS


