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Fig. 8: Qualitative results: Note that the method employs ground-truth boxes.
The first row is from Cityscapes. In the bottom two rows, from left to right:
Medical, KITTI, Rooftop, ADE.

Fig. 9: Unsupervised Image Partitioning. From left to right: BP-BR, BP,
BR and ASA. We use dotted line to represent supervised method.

achieves higher performance than carefully designed pixel-wise baselines, demon-
strating the e↵ectiveness of reasoning on our deformed grid.

5.3 Unsupervised Image Partitioning

Dataset: Following SSN [24], we train the model on 200 training images in the
BSDS500 [4] and evaluate on 200 test images. Details are provided in appendix.

Evaluation Metric: Following the SSN and SEAL [24,36], we use Achievable
Segmentation Accuracy (ASA), Boundary Precision (BP) and Boundary Recall
(BR) to evaluate the performance of superpixels. For BP and BR, we set the
tolerance to be 3 pixels. The evaluation scripts are from SEAL2.

Baselines: We compare our method with both traditional superpixel methods,
SLIC [1], SNIC [2], and deep learning based method SSN [24], SEAL [36]. Note
that SEAL not only utilizes ground-truth annotation for training, but also is

2 https://github.com/wctu/SEAL

Gao, J., Wang, Z., Xuan, J., & Fidler, S. (2020). Beyond Fixed Grid: Learning 
Geometric Image Representation with a Deformable Grid.
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Network Architecture

backbone model

Chen et al. 
2017 custom ConvNet

Meier et al. 
2017 custom FCN U-Netish

Wick & Puppe, 
2018 custom FCN U-Net

Quirós, 2018 GAN U-Net
Oliveira et al., 

2018
ResNet-50 / VGG-16 U-Net

we investigate
+ResNet-34, SE-ResNet-34/50, SE-

ResNeXt-34/50, Inception-v3, 
Inception-ResNet-v2, EfficientNet

+ FPN



Network Architecture

rescaling tiling megapixels in DNN

Chen et al. 
2017 up to 4 MP 28 x 28 px < 0.1

Meier et al. 
2017 n x 256 px none < 0.1

Wick & 
Puppe, 2018 260 × 390 px none 0.1

Quirós, 2018 1024 x 768 none 0.8

Oliveira et 
al., 2018 up to 1 MP 300 x 300 px 0.1

we 
investigate up to 4 MP various 0.39 and 1.15



NVIDIA GeForce RTX 2080 Ti

12 GB RAM

NVIDIA Tesla V100

32 GB RAM

0.39 MP

1.15 MP
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Main Findings

• Pixelwise semantic segmentation works well for newspaper layouts


• Resolutions and tiling configurations make a difference


• Inception-ResNet-v2 with vertical tiles excels for regions (> 95% MCC)


• EfficientNet excels for separator lines (> 91% MCC)


• Small training sets (< 50 pages) already give good results



Thank you.


