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Indoor Scene Object Detection:

2D Object Detection
(x,y,w,h) + class

3D Object Detection
(x,y,2,1,w, h,orientation) + class

Challenge of Indoor 3D Object Detection:
« Indoor scenes usually contain many objects, and the categories of objects
are variety.
¢ There are large size differences between different categories of objects,
which has a great impact on object localization.
*  There are complex spatial relationships between objects, some clustered in
groups, and some stacked on other objects.
*  These factors make it difficult for 3D detectors to accurately predict the
position and size of objects in a regression head.
Contribution:
¢ We show that with a proper structure, the decoupling of 3D bounding box
regression can effectively improve the performance of the 3D detector.

*  The proposed spherical center loss further considers the geometric distance
between proposal and ground truth, which achieves higher 3D localization
accuracy.

¢ Our S-VoteNet achieves state-of-the-art 3D object detection performance
on SUN RGB-D dataset by only using point cloud as input.
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3D Box Encoding:
¢ Axis Aligned 3D box: no orientation, 6-dim vector, (x,y, z, dx, dy, dz)
e Oriented 3D box: original, 7-dim vector, (x,y,z, [, w, h, orientation)
8-corners, 24-dim vector, (x;,y;, zi),i € [1,8]
4-corners, 10-dim vector, heop, hyottom, (X yi), i € [1,4]
Object Location Loss:

* 12 center loss: The Euclidean distance between proposal and ground truth
is used as supervision.

¢ ToU loss: The intersection over union between proposal and ground truth
is used as supervision.
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Spherical En

coding:

i

§+ Spherical encoding: 4-dim vector, (x, y, z, r)

*  Based on spherical encoding, 3D object detection
task can be decoupled into object location task,
size and orientation prediction task.

*  For object location, we use spherical center loss to
constrain the prediction result. For size and
orientation, we adopt the method of F-PointNet.
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¢ The distance between ground truth and proposal is the same for objects of
different sizes, but the IoU is different.

¢ Compared to [2 center loss, spherical center loss introduces object size into
object center prediction, achieving higher 3D localization accuracy.

Geometric Information of Point Cloud:
*  From the geometric information

of point cloud on different stage,
seeds are suitable for object size

and orientation  prediction,
while votes are fit for object
seeds votes location prediction.
Overall Structure of S-VoteNet:
a. Box Size Prediction Branch o
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b. Box Center Prediction Branch
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¢ S-VoteNet is built on the basis of VoteNet, which introduces spherical
proposal to decouple the 3D object detection task.

e To align the object center predictions with the size and orientation
predictions, we use votes indices to find the corresponding seeds.

Performance on SUN RGB-D Val Set:

I Qualitative Results:
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to ImVoteNet without the use of RGB information.

Ablation Study:

methods

| use spherical center loss | use seed | mAP
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BoxNet is the baseline of VoteNet,
which generates proposals without
the voting module.

VoteNet* is a variant of VoteNet,
which decouples 3D object detection
task without spherical encoding.
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¢ S-VoteNet advances the baseline by 2.6% mAP, which achieves performance second only :
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