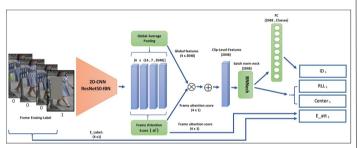
Not 3D Re-ID: Simple Single Stream 2D Convolution for Robust Video Re-identification

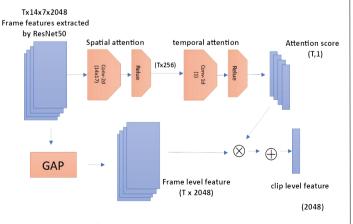
Durham University

Aishah Alsehaim and Toby P. Breckon


Department of Computer Science **Durham University**

Building robust video-based SSUE: person Re-ID under varying conditions.

Method:


Simple video Re-ID using {Resnet50+Two-layer spatialtemporal attention} produce an efficient video features:

- ResNet50-IBN-a as a frame features extractor.
- spatial-temporal attention following feature extraction to produce video level features convolution + 1D convolution).

Temporal features aggregation:

The use of 2D-Resnet50 as frame feature extractor is followed by a temporal aggregation method to produce video level features from T frames.

Spatial-temporal attention

Training:

The use of multiple loss functions with differing roles succeeds in guiding the learning process of the model without additional complexity.

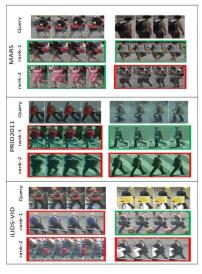
$$RLL_{L}(\mathbf{x}_{i}^{c}; f) = L_{P}(\mathbf{x}_{i}^{c}; f) + \lambda L_{N}(\mathbf{x}_{i}^{c}; f)$$

Pulls similar samples closer in the embedding space and pushes dissimilar samples apart using a predefined distance measurement.

$$ID_L = \sum_{i=1}^{N} -q_i \log(pre_i).$$

Supports the model in learning more discriminative features.

$$center_L = \frac{1}{2}\sum_{i=1}^B||f_i-c_{y_i}||_2^2$$
 Supports RLL loss to learn sample centric features.


$$E_att_L = \frac{1}{T} \sum_{t=1}^{T} E_Label_t \ a_i^t$$

Guides the model to overcome partial occlusions.

Experimental Results:

Methods	Publication	MARS [38]	PRID2011 [11]	iLIDS-VID [32]		Memory Usage (MB)		
		rank-1 (mAP)	rank-1	rank-1	Input	Fore/Backward Pass	Params	Total Size
SAN [17]	CVPR 2018	82.3 (65.8)	93.2	80.2				
Att-Driven [37]	CVPR 2019	87.0 (78.2)	93.9	86.3				
VRSTC [12]	CVPR 2019	88.5 (82.3)	-	86.3				
Co-Segment [27]	ECCV 2019	84.9 (79.9)	-	-				
GLTR [16]	ICCV 2019	87.02 (78.47)	95.50	86.00	9.00	214.11	94.47	317.59
M3D [15]	IEEE-T IP 202	0 88.63 (79.46)	96.60	86.67	9.00	1213.83	104.58	1327.41
VPRFT [22]	AAAI 2020	88.6(82.9)	93.3	-	9.19	153.92	290.58	453.69
Ours	-	89.62 (84.61)	96.6	89.33	9.19	171.92	290.58	471.69
VPRFT [22]								
(pre-trained on MARS)	AAAI 2020	-	96.6	-				
Ours								
(pre-trained MARS)	-	-	96.63	97.33				
Ours								
(pre-trained MARS and iLIDS-VID) - 88.21(83.10)		97.75	95.33					

Statistical comparison against state-of-the-art methods.

rank-1 and rank-2 Re-ID results to given a query samples over 3 leading benchmark datasets

> Green: true match Red = false match

Conclusion:

Single stream robust video Re-ID approach using only 2D convolution for video-based Re-ID.

Using robust training strategies without additional complexity exceeds state of the art accuracy.

Our simple 2D method exceeds performance of prior 3D convolution and complex multi-stream based approaches.

Full paper:

