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We select one off-the-shelf architecture pre-trained on ImageNet for image classification, and one CNN

for text classification. We choose the side network (the one with locked weights) to be the same as the one

for the image classification task to favor visual features over textual. We then merge the outputs by

linearly combining the features resulting from each network and finally, we add a fully connected layer

before the actual classifier.

Fig. 1. Multimodal side-tuning classifier for hybrid text and image classification. Base model (a) and side model (b) reflects the same MobileNetV2 architecture,
while (c) is a CNN inspired from sequence text classification task. The final merge architecture combines the output of the three networks into one new
encoding as shown in (d)
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TABLE IV

RESNETS0. BEST RESULTS IN BOLD.

OVERALL AND PER-CLASS ACCURACY ON THE TOBACC03482 DATASET COMPARED WITH THE RESULTS FROM [8]. THE SELECTED ALPHA
CONFIGURATION FOR THE MULTIMODAL SIDE-TUNING IS @y = 0.3, a; = 0.2, AND @, = 0.5 FOR MOBILENETV2 AND a; = 0.3, a; = 0.3, AND a; = 0.4 FOR

OVERALL ACCURACY ON THE TOBACC03482 IMAGE DATASET USING
TWO DIFFERENT OFF-THE-SHELF ARCHITECTURES FOR BOTH BASE AND
SIDE MODEL IN THE SIDE TUNING FRAMEWORK. BEST RESULT IN BOLD.

EXPERIMENTAL

Model OA Adve Email Form Letter Memo News Note Report Resume  Scientific

Audebert 87.8% 93.0% 98.0% 88.0% 86.0% 90.0% 90.0% 85.0%  71.0% 86.0% 68.0%

Text 67.8% 933% 29.5% 77.0% 58.8% 49.7% 63.6% 68.7%  52.0% 60.7% 79.9%

Multimodal (ResNet50) 903% 96.1% 98.3% 90.8% 91.7% 93.5% 955% 87.6%  76.7% 89.4% 68.0%

Multimodal (MobileNetV2) 90.5% 94.8% 99.1% 88.7% 932% 93.0% 955% 89.7%  76.2% 95.3% 67.4%
TABLE I TABLE I

BASELINE MODELS AND MULTIMODAL OVERALL ACCURACY FOR
[TOBACCO3482 USING MOBILENETV2 (VISUAL FEATURES) AND 1D CNN
(TEXTUAL FEATURES) ARCHITECTURES. BEST RESULT IN BOLD.

Model (base architecture) #Params OA Model #Params OA
Image (ResNet50) ~5IM  87.2% R ES U LTS Text ~18M  67.8%
Image (MobileNetV2) ~T™M 88.0% Image (fine-tuning) ~35M  84.0%
Image (side-tuning) ~T™M 88.0%
Multimodal (ResNet50) ~ 5™ 90.3% - - -
Multimodal (MobileNetV2) =~ 12M 90.5% Multimodal (side-tuning) =~ 12M 90.5%
B A TABLE III
EXPLORING DOCUMENT OVERALL ACCURACY ON THE RVL-CDIP DATASET COMPARED WITH THE
1 ~ RESULTS FROM PREVIOUS WORKS. MODALITIES OF THE DATA SOURCE TIMING OF DOCUMENT INFERENCE
. IMAGE MODELS WITH ARE IMAGE (), TEXT (T), OR BOTH (I+T). THE SELECTED ALPHA (average of 1124ms on GPU)
N CONFIGURATION FOR THE MULTIMODAL SIDE-TUNING IS ag = 0.3,
IMAGE ~ < DIFFERENT ALPHA a) = 0.2, AND a; = 0.5 FOR MOBILENETV2 AND g = 0.3, a; = 0.3, AND Jmage pre-processing]
F|NE-TUN|NG\ CURRICULUM az = 0.4 FOR RESNET50. BEST RESULT IN BOLD. ‘
N Text preprocessing
N Model #Params  Modality OA
05—~~~ e CNNs [19] ~62M 1 89.8%
Base model for image|
753 Audebert [8) ~8M I+T 90.6% )
: N AlexNet + SPP (22 ~62M I 90.94% | .
MAGE VGGI6 (23] ~ 138M I 90.97% Side model fortox|
FEAmE VGGI6 + ULMFit |6] ~ 162M I+T 93.6%
TEXT FROM 1 T ~ 1.8M T 80.5%
5 EXTRACTIQN ext . o o
SCRATCH ' Multimodal (MobileNetV2) ~ 12M I+T 92.2% ocR .
T \P Multimodal (ResNet50) ~5TM I+T 92.7%
0] 0,5 a

szingaro.github.io/multimodal-side-tuning
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