J. Caracotte, F. Morbidi, E. Mouaddib

MIS laboratory, Université de Picardie Jules Verne, France

1. Objective and contributions

Goal: design an omnidirectional photometric stereo algorithm for twin-fisheye cameras

- Extension of the spherical image irradiance equation proposed in [1], to fit the model of a twin-fisheye camera
- New reconstruction pipeline
- Real-world experiments with the Ricoh Theta V
- Mirror balls are used to estimate the direction of the light sources (we adapted the method in [2])

2. Modeling of the twin-fisheye camera

$\underbrace{}_{c_{2} \mathbf{R}_{c_{1}}}$

3. Spherical image irradiance equation

The dual-fisheye images are represented by using the spherical coordinate system (ρ, θ, φ) :
$\left\{\begin{array}{l}x=\rho \sin \theta \cos \varphi, \\ y=\rho \sin \theta \sin \varphi, \\ z=\rho \cos \theta .\end{array}\right.$

Spherical irradiance equation at point (θ, φ)

where

$$
p \triangleq \frac{1}{\rho} \frac{\partial \rho}{\partial \theta}=\frac{\partial \ln \rho}{\partial \theta}, \quad q \triangleq \frac{1}{\rho} \frac{\partial \rho}{\partial \varphi}=\frac{\partial \ln \rho}{\partial \varphi}
$$

References:

[1] Photometric stereo with central panoramic cameras, J. Caracotte, F. Morbidi, E. Mouaddib, Comput. Vis. Image Und., vol. 201, December 2020.
[2] Camera and light calibration from reflections on a sphere, D. Schnieders, K.-Y. Wong, Comput. Vis. Image Und., vol. 117, n. 10, pp. 1536-1547, 2013.
[3] Spherical Visual Gyroscope for Autonomous Robots using the Mixture of Photometric Potentials, G. Caron, F. Morbidi, in Proc. IEEE Int. Conf. Robot. Automat., pp. 820-827, 2018.
Source code \& dataset (free download): home.mis.u-picardie.fr/~fabio/PhotoSphere.html

