Photometric Stereo with Twin-Fisheye Cameras

J. Caracotte, F. Morbidi, E. Mouaddib

MIS laboratory, Université de Picardie Jules Verne, France

UNIVERSITE de **Picardie** modélisation, information & systèmes mis.u-picardie.fr

1. Objective and contributions

Goal: design an omnidirectional photometric stereo algorithm for twin-fisheye cameras

4. Reconstruction pipeline

• Each dual-fisheye image is split in two subimages • The gradient field is

estimated before the spatial resampling

- Estimation of the radial distance
- Extension of the *spherical image irradiance* equation proposed in [1], to fit the model of a twin-fisheye camera
- New reconstruction pipeline
- Real-world experiments with the Ricoh Theta V
- Mirror balls are used to estimate the direction of the light sources (we adapted the method in [2])

5. Experimental validation **5.1. Simulation experiments**

Example of input image

Estimated normal vectors in false colors

5.2. Real-world experiments

Half of the final 3D reconstruction of the scene Room

2. Modeling of the twin-fisheye camera

Use the same approach as in [3] The translation vector between \mathcal{F}_{c_1} and \mathcal{F}_{c_2} is assumed to be zero

3. Spherical image irradiance equation

The *dual-fisheye* images are represented by using the spherical coordinate system (ρ, θ, φ) :

Experiment setup

3D reconstruction of *Cat* and Teddy Bear

• Input images: 12 for *Cat* and 11 for *Teddy Bear*

6. Future work

- Take light attenuation into account
- Validation using an outdoor scene under natural illumination conditions

References:

ICPR'20

Spherical irradiance equation at point (θ, φ)

where

[1] *Photometric stereo with central panoramic cameras*, J. Caracotte, F. Morbidi, E. Mouaddib, Comput. Vis. Image Und., vol. 201, December 2020.

[2] Camera and light calibration from reflections on a sphere, D. Schnieders, K.-Y. Wong, Comput. Vis. Image Und., vol. 117, n. 10, pp. 1536–1547, 2013.

[3] Spherical Visual Gyroscope for Autonomous Robots using the Mixture of *Photometric Potentials,* G. Caron, F. Morbidi, in Proc. IEEE Int. Conf. Robot. Automat., pp. 820–827, 2018.

Source code & dataset (free download):

home.mis.u-picardie.fr/~fabio/PhotoSphere.html

