
Mobile Augmented Reality: Fast, Precise, and

Smooth Planar Object Tracking

Dmitrii Matveichev

Department of Computer Science

National Taipei University

Taipei, Taiwan

xapocmat@gmail.com

Daw-Tung Lin

Department of Computer Science

National Taipei University

Taipei, Taiwan

dalton@gm.ntpu.edu.tw

Abstract— We propose an innovative method for combining

sparse optical flow tracking and descriptor matching algorithms.

The proposed approach solves the following problems that are

inherent to keypoint-based and optical flow-based tracking algo-

rithms: spatial jitter, extreme scale transformation, extreme per-

spective transformation, degradation in the number of tracking

points, and drifting of tracking points. Our algorithm provides

smooth object-position tracking under six degrees of freedom

transformations with a small computational cost for providing a

high-quality real-time AR experience on mobile platforms. We

experimentally demonstrate that our approach outperforms the

state-of-the-art tracking algorithms while offering faster com-

putational time. A mobile augmented reality (AR) application, which

is developed using our approach, delivers planar object tracking

with 30 FPS on modern mobile phones for a camera resolution of

1280x720. Finally, we compare the performance of our AR

application with that of the Vuforia-based AR application. The test

results show that our AR application delivers better AR experience

than Vuforia in terms of smooth transition of object-pose between

video frames.

I. INTRODUCTION

Our work is focused on planar object tracking (POT) problem

and its application in mobile augmented reality (AR). The POT

problem can be formulated as follows: find the precise planar

object position on a sequence of video frames, using known object

image.

II. OVERVIEW OF PROPOSED ALGORITHM

We propose to combine OF tracking and image patch

descriptors into one robust tracking algorithm. The algorithm is

split into two phases: detection and tracking.

The detection phase is performed, If the object was not detected

in the previous frame. Detection is done by means of ORB binary

descriptors detection and matching. Based on matched points we

compute pose and output: homography transformation matrix;

frame image; detection result (whether an object was detected or

not). The tracking phase is performed if the object was detected in

the previous frame. For every frame in the tracking phase, the

following steps are performed. 1) Using the homography matrix,

warp the current and previous frames so that the detected object is

located in the center of a frame and is of the same size as that of

the original object image. 2) Using the homography matrix,

project the object points pt to the current warped frame (points pp).

3) Do sparse OF point tracking, with following input: warped

previous frame image, warped current frame image and projected

Fig. 1. (dt: object descriptors; pt: 2D object points; ptm: matched object points;

pfm: matched frame points. pp: projected object points; ppo: successfully tracked

projected object points; pto: successfully tracked target points)

object points (pp). 4) Flter the tracked points (pto and ppo) using the

descriptor matching based approach (it is different from traditional

descriptors matching, and you may find detailed description in our

paper). 5) Project matched frame points (pfm) back to the current

frame. 6) compute the object pose using matched points (ptm and

pfm). 7) output of each frame: homography transformation matrix,

frame image, and detection result (whether an object was detected

or not).

Therefore, by its design OBD: eliminates the drifting problem

(guarantee that the tracked points correspond to the same points on

the template image), eliminates OF points number degradation

problem (thanks to object points projection, number of input

points for OF is always equal to the number of object points),

increases the accuracy of computed pose and maintain smooth

object pose transition between frames. Additionally, in OBD

algorithm the descriptors matching is basically one XOR operation

between two matrices of the same size. Thus, it is not

computationally expensive.

III. EVALUATION

To evaluate OBD and compare it with state-of-the-art POT

algorithms, we used “Planar object tracking in the wild: A

benchmark [4]. As evaluation metrics we used alignment error (5)

and spatial jitter (8).

mailto:xapocmat@gmail.com
mailto:dalton@gm.ntpu.edu.tw

A. Results analysis

Fig. 2. Scale video sequences evaluation
In the scale video sequences OBD dramatically outperformed

other trackers and successfully detected the object pose in 90% of

the frames (with eAL = 7).

Fig. 3. Perspective distortion video sequences evaluation

Fig. 4. All video sequences evaluation

Fig. 5. Average spatial jitter POT algorithms. (detection rate: percentage of frames

with eAL smaller then 20.)

In the perspective distortion video sequences OBD also

outperformed all the other trackers and successfully detected the

object pose in 79% of video frames (with eAL = 7). Finally, OBD

demonstrated the best average performance across all sequences,

and it successfully detected object for 82% frames (with eAL less

than 20).

OBD has almost zero spatial jitter across all video sequences

with the highest detection rate. GPF [28] tracker has almost the

same spatial jitter, however its detection rate is only 56% and all

other POT algorithms with low spatial jitter has detection rate

below 30%.

B. Proof of Concept Mobile AR Application

To evaluate the OBD performance on mobile platforms, we

implemented an AR application using the Unity 3D platform [34].

We used the OpenCV library [33] as a native plugin for the Unity

3D platform. With more than 30 different planar objects in

matching database modern phones (such as Google Pixel 3 and

iPhones older than iPhone 6s) run with 30 FPS on 1280x720 camera

resolution. In Fig. 6 we demonstrate the example screenshots taken

using the developed mobile AR application.

To compare our AR application with other state-of-the- art AR

products, we developed a Vuforia [3] based AR application. For

Vuforia and our AR application databases, we used identical

template images. Our tests showed that for some objects (such, as

objects in Fig. 6), the object pose detected by Vuforia had spatial

jitter, while our AR application provided precise and smooth object-

pose transition between camera frames.

Fig. 6. Mobile AR example screenshots for two different planar objects with

rendered 3D models

