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Abstract— We propose an innovative method for combining 

sparse optical flow tracking and descriptor matching algorithms. 

The proposed approach solves the following problems that are 

inherent to keypoint-based and optical flow-based tracking algo-

rithms: spatial jitter, extreme scale transformation, extreme per-

spective transformation, degradation in the number of tracking 

points, and drifting of tracking points. Our algorithm provides 

smooth object-position tracking under six degrees of freedom 

transformations with a small computational cost for providing a 

high-quality real-time AR experience on mobile platforms. We 

experimentally demonstrate that our approach outperforms the 

state-of-the-art tracking algorithms while offering faster com-

putational time. A mobile augmented reality (AR) application, which 

is developed using our approach, delivers planar object tracking 

with 30 FPS on modern mobile phones for a camera resolution of 

1280x720. Finally, we compare the performance of our AR 

application with that of the Vuforia-based AR application. The test 

results show that our AR application delivers better AR experience 

than Vuforia in terms of smooth transition of object-pose between 

video frames. 

I. INTRODUCTION 

Our work is focused on planar object tracking (POT) problem 

and its application in mobile augmented reality (AR). The POT 

problem can be formulated as follows: find the precise planar 

object position on a sequence of video frames, using known object 

image. 

II. OVERVIEW OF PROPOSED ALGORITHM 

We propose to combine OF tracking and image patch 

descriptors into one robust tracking algorithm. The algorithm is 

split into two phases: detection and tracking. 

The detection phase is performed, If the object was not detected 

in the previous frame. Detection is done by means of ORB binary 

descriptors detection and matching. Based on matched points we 

compute pose and output: homography transformation matrix; 

frame image; detection result (whether an object was detected or 

not). The tracking phase is performed if the object was detected in 

the previous frame. For every frame in the tracking phase, the 

following steps are performed. 1) Using the homography matrix, 

warp the current and previous frames so that the detected object is 

located in the center of a frame and is of the same size as that of 

the original object image. 2) Using the homography matrix, 

project the object points pt to the current warped frame (points pp). 

3) Do sparse OF point tracking, with following input: warped 

previous frame image, warped current frame image and projected  

 

Fig. 1. (dt: object descriptors; pt: 2D object points; ptm: matched object points; 

pfm: matched frame points. pp: projected object points; ppo: successfully tracked 

projected object points; pto: successfully tracked target points) 

object points (pp). 4) Flter the tracked points (pto and ppo) using the 

descriptor matching based approach (it is different from traditional 

descriptors matching, and you may find detailed description in our 

paper). 5) Project matched frame points (pfm) back to the current 

frame. 6) compute the object pose using matched points (ptm and 

pfm). 7) output of each frame: homography transformation matrix, 

frame image, and detection result (whether an object was detected 

or not). 

Therefore, by its design OBD: eliminates the drifting problem 

(guarantee that the tracked points correspond to the same points on 

the template image), eliminates OF points number degradation 

problem (thanks to object points projection, number of input 

points for OF is always equal to the number of object points), 

increases the accuracy of computed pose and maintain smooth 

object pose transition between frames. Additionally, in OBD 

algorithm the descriptors matching is basically one XOR operation 

between two matrices of the same size. Thus, it is not 

computationally expensive. 

III. EVALUATION 

To evaluate OBD and compare it with state-of-the-art POT 

algorithms, we used “Planar object tracking in the wild: A 

benchmark [4]. As evaluation metrics we used alignment error (5) 

and spatial jitter (8). 
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A. Results analysis 

 

Fig. 2. Scale video sequences evaluation 
In the scale video sequences OBD dramatically outperformed 

other trackers and successfully detected the object pose in 90% of 

the frames (with eAL = 7). 

 

Fig. 3. Perspective distortion video sequences evaluation 

 

Fig. 4. All video sequences evaluation 

 

 
Fig. 5. Average spatial jitter POT algorithms. (detection rate: percentage of frames 

with eAL smaller then 20.) 

In the perspective distortion video sequences OBD also 

outperformed all the other trackers and successfully detected the 

object pose in 79% of video frames (with eAL = 7). Finally, OBD 

demonstrated the best average performance across all sequences, 

and it successfully detected object for 82% frames (with eAL less 

than 20). 

OBD has almost zero spatial jitter across all video sequences 

with the highest detection rate. GPF [28] tracker has almost the 

same spatial jitter, however its detection rate is only 56% and all 

other POT algorithms with low spatial jitter has detection rate 

below 30%. 

 
B. Proof of Concept Mobile AR Application 

To evaluate the OBD performance on mobile platforms, we 

implemented an AR application using the Unity 3D platform [34]. 

We used the OpenCV library [33] as a native plugin for the Unity 

3D platform. With more than 30 different planar objects in 

matching database modern phones (such as Google Pixel 3 and 

iPhones older than iPhone 6s) run with 30 FPS on 1280x720 camera 

resolution. In Fig. 6 we demonstrate the example screenshots taken 

using the developed mobile AR application. 

To compare our AR application with other state-of-the- art AR 

products, we developed a Vuforia [3] based AR application. For 

Vuforia and our AR application databases, we used identical 

template images. Our tests showed that for some objects (such, as 

objects in Fig. 6), the object pose detected by Vuforia had spatial 

jitter, while our AR application provided precise and smooth object-

pose transition between camera frames. 

Fig. 6. Mobile AR example screenshots for two different planar objects with 

rendered 3D models 


