

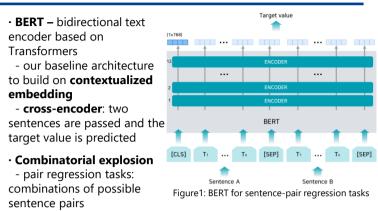
Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP Tasks

SAMSUNG SDS

Hyunjin Choi, Judong Kim, Seongho Joe, Youngjune Gwon

Milan, Italy 10 | 15 January 2021

Motivation



- e.g., 10,000 sentences \rightarrow n*(n-1)/2 = about 50 million

· Need single sentence embedding models

Models

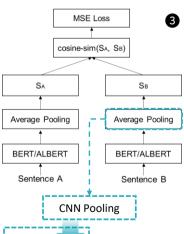
[CLS] token embedding

 [CLS] token: summarizes the information from other tokens
the easiest way

2 Pooled token embedding

· Make fixed-length sentence vector by

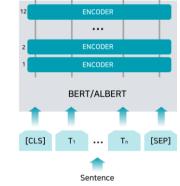
- (1) averaging the token embedding output
- (2) max pooling



(B, H) Average Pooling 1x1 Conv. 1 Ianh Max Pooling 3x1 Conv. 128 Ianh Max Pooling 3x1 Conv. 128 Ianh Max Pooling 5x1 Conv. 64 Ianh Max Pooling 5x1 Conv. 64 Ianh Max Pooling 1x1 Conv. 32 Ianh

Max Pooling

(B, 1, T, H)



Sentence-BERT/ALBERT (SBERT/SALBERT)

· SBERT: Reimers & Gurevych

Siamese network architecture

- average-pools a pair of the BERT embeddings to fixed-size

embeddings

- using cosine similarity to derive semantically meaningful sentence embeddings

SALBERT

- based on ALBERT
- same Siamese network as SBERT

CNN-SBERT/SALBERT (ours)

• Employ a **CNN architecture** - apply an outer CNN network that **replaces average pooling** before cosine similarity

- convolutional layers with the hyperbolic tangent activation function interlaced with pooling layers

Tasks & Datasets

· Semantic Textual Similarity

- Evaluate the **similarity between two sentences** (regression task)

- Semantic Textual Similarity benchmark (**STSb**): includes 8,628 sentence pairs – train 5,749, dev 1,500, test 1,379

· Natural Language Inference

- determine whether a "hypothesis" is true (entailment), false (contradiction), or undetermined (neutral) given a "premise"

- Stanford Natural Language Inference (SNLI) corpus
- Multi-Genre Natural Language Inference (MultiNLI) corpus

Experimental Results

Model	Spearman (Pearson)
Not fine-tuned	
BERT [CLS]-token embedding	6.43 (1.70)
BERT Avg. pooled token embedding	47.29 (47.91)
ALBERT [CLS]-token embedding	0.86 (4.57)
ALBERT Avg. pooled token embedding	47.84 (46.57)
Fine-tuned on STSb	
BERT [CLS]-token embedding	12.96 (7.49)
BERT Avg. pooled token embedding	55.76 (54.90)
SBERT	84.66 (84.86)
CNN-SBERT	85.72 (86.15)
ALBERT [CLS]-token embedding	37.98 (27.89)
ALBERT Avg. pooled token embedding	61.06 (60.41)
SALBERT	74.33 (75.26)
CNN-SALBERT	82.30 (83.08)
Fine-tuned on NLI (MultiNLI + SNLI)	
BERT [CLS]-token embedding	32.72 (26.88)
BERT Avg. pooled token embedding	69.57 (68.49)
SBERT	77.22 (74.53)
CNN-SBERT	76.77 (75.31)
ALBERT [CLS]-token embedding	24.87 (4.11)
ALBERT Avg. pooled token embedding	54.21 (53.58)
SALBERT	74.05 (70.78)
CNN-SALBERT	73.70 (72.24)
Fine-tuned on NLI (MultiNLI + SNLI) and STSb	
BERT [CLS]-token embedding	44.77 (38.74)
BERT Avg. pooled token embedding	67.61 (65.30)
SBERT	85.32 (84.51)
CNN-SBERT	85.91 (85.63)
ALBERT [CLS]-token embedding	40.35 (33.46)
ALBERT Avg. pooled token embedding	60.24 (59.98)
SALBERT	77.59 (77.82)
CNN-SALBERT	83.49 (83.87)

Table1: Evaluation on the STSb by fine-tuning sentence embeddings on STS, NLI, and both

· Fine-tuning datasets

- NLI train sets that are not directly related to STSb still gives a good performance

- Our best results are obtained by fine-tuning with both NLI and STSb train sets

· Compare models

- [CLS]-token embedding < average pooled token embedding
- < Siamese network < CNN added Siamese network

- ALBERT-based models generally achieve lower performance

· CNN architecture

- positive impact on sentence embedding performances

- improves the ALBERT-based sentence embedding models more than the BERT-based models

- improvement by CNN to ALBERT models can be as high as 8 points, which is compared to 1 point for the case of BERT models

- $\ensuremath{\mathsf{ALBERT}}$ exposes more instability compared to $\ensuremath{\mathsf{BERT}}$ and such instability can be alleviated by $\ensuremath{\mathsf{CNN}}$