Human-Centric Parsing Network for Human-Object Interaction Detection

Guanyu Chen¹, Chong Chen¹, Zhicheng Zhao^{1,2}*, and Fei Su^{1,2}

¹ Beijing University of Posts and Telecommunications

² Beijing Key Laboratory of Network System and Network Culture, Beijing, China

INTRODUCTION Human-Object Interaction Detection

Human-object interactions detection is an essential task of image inference, but current methods can't efficiently make use of global knowledge in the image. To tackle this challenge, in this paper, we propose a Human-Centric Parsing Network(HCPN), which integrates global structural knowledge to infer human-object interactions. We evaluate our model on V-COCO dataset, and a great improvement is achieved compared with state-of-the-art methods.

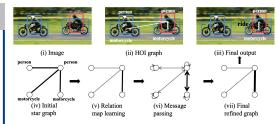
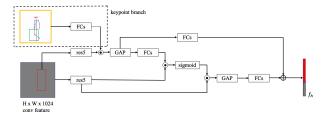



Fig 1. Illustration of the proposed HCPN.

GRAPH INITIALIZATION

Feature Extraction

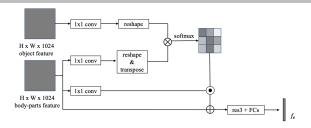


Fig 2. Feature extraction for nodes and edges

For a person in the image, we first construct a star graph, by centering the human node and then linking the other object nodes to it. Such kind of structure can avoid the information flow between object nodes, and enhance human feature to the maximum extent. To initialize this star graph, we adopt an attention-based method, such as that developed in [1], to generate node features. For edge features, we split human keypoints into six body-parts, and use the similarity of objects and body-parts appearance features to selectively integrate body-parts features.

NETWORK PARTS

Message Passing

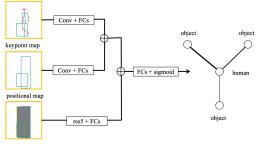


Fig 3. Link function.

The star graph will go through four parts, namely, the link, message, update and readout functions. The link function will generate a human-object relation map for the star graph, measuring the degree of interaction and calculating the weights of information flow. Similar to the message passing neural network (MPNN) [2], the message and update functions iteratively update node features with messages coming from other nodes. Lastly, the readout function computes the multi-class label for each node.

EXPERIMENTS

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS.

Methods	Feature Backbone	mAP_{role}
Gupta et al.	ResNet-50-FPN	31.8
InteractNet	ResNet-50-FPN	40.0
GPNN	Deformable ConvNets	44.0
iCAN	ResNet-50	45.3
RPNN	ResNet-50	47.53
HCPN(ours)	ResNet-50	47.72

TABLE II ABLATION ON V-COCO DATASET.

	mAP_{role}	mAP_{role}
Methods	Scenario1	Scenario2
HCPN w/o message passing	31.52	39.52
HCPN w/o relation map	35.05	43.94
HCPN w/o body-parts attention	33.45	41.16
Node feature using [3]	35.28	43.71
Body-parts spatial relation map	38.10	47.1
Message passing using [3]	38.32	47.23
HCPN	38.62	47.72

REFERENCE

/ Acknowledgement

[1] C. Gao, Y. Zou, and J.-B. Huang, "ican: Instance-centric attention network for human-object interaction detection," arXiv preprint arXiv:1808.10437, 2018.

[2] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, "Neural message passing for quantum chemistry," in *Proceedings of the 34th International Conference on Machine Learning-Volume70*. JMLR. org, 2017, pp. 1263–1272.
[3] S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu, "Learning human-object interactions by graph parsing neural networks," in *Proceedings of the European Conference on Computer Vision (ECCV)*, 2018, pp. 401–417.

This work is supported by Science and Technology Founda- tion of Beijing Municipal Science & Technology Commission (Z201100007520001), and Chinese National Natural Science Foundation (62076033 and U1931202).