On the use of Benford's law to detect GAN-generated images

POLITECNICO MILANO 1863

Università

DEGLI STUDI DI PADOVA Nicolò Bonettini^{*}, Paolo Bestagini^{*}, Simone Milani[†], Stefano Tubaro^{*}


Detection of GAN-generated images

Problem

Images generated by GANs can be very realistic

Goal

 To detect whether a picture is a natural one or it has been generated by a neural network

Method

Main idea

- GAN images may have different statistics from natural images
- Benford's law can capture these traces


$p(d) = \log_{10} \left(1 + \frac{1}{d}\right)$ 0.1 0.0 1 2 3 4 5 6 7 8 9 First Digit

Proposed pipeline

- Given a query image, compute FD of quantized DCT coefficients
- 2. Compute probability distribution through histogram computation
- 3. Fit theoretical Benford's curve
- 4. Use deviation between computed and theoretical distribution as a feature vector
- Train a simple classifier (Random Forest) to discriminate between real and generated images

••••• Feature vector •

- Different feature vectors are generated by combining:
 - 9 possible DCT frequencies
 - 5 possible JPEG quality factors (QF)
 - 4 possible bases for computing the first digits

Dataset

Publicly available dataset from [1]

Architecture	Dataset	Number of images	
	orange2apple	1280	
	photo2ukiyoe	4072	
	winter2summer	1484	
Cycle-Gan	zebra2horse	1670	
	photo2cezanne	3978	
	photo2vangogh	4099	
	photo2monet	4765	
	facades	259	
	cityscapes	1996	
	sats	684	
ProGAN	lsun_bedroom	30770	
	lsun_bridge	28768	
	lsun_churchoutdoor	29120	
	lsun_kitchen	42706	
	lsun_tower	29020	

Results

Uncompressed images

Dataset	Proposed	Xception	Steganalysis SVM [2]	Steganalysis RF
orange2apple	98.13	97.64	88.80	76.49
photo2ukiyoe	100.00	97.41	86.78	87.90
winter2summer	100.00	68.33	77.96	68.89
zebra2horse	99.69	89.58	91.01	77.00
photo2cezanne	99.97	95.91	95.88	93.17
photo2vangogh	100.00	93.75	94.68	92.93
photo2monet	99.84	94.08	94.80	89.87
facades	100.00	99.84	73.93	76.06
cityscapes	100.00	100.00	100.00	100.00
sats	99.69	73.00	90.92	96.93
lsun_bedroom	100.00	76.22	98.92	99.25
lsun_bridge	99.89	82.49	95.90	95.16
lsun_churchoutdoor	99.99	99.79	98.81	99.12
lsun_kitchen	99.99	87.26	99.49	99.59
lsun_tower	99.98	95.45	98.87	99.19
avg	99.83	89.64	91.03	90.11

Compressed images

QF	Dataset	Proposed	Xception
100	orange2apple	94.50	92.56
	photo2ukiyoe	100.00	98.50
	cityscapes	100.00	100.00
	lsun_tower	100.00	94.64
95	orange2apple	82.01	90.66
	photo2ukiyoe	97.00	98.42
	cityscapes	99.99	99.32
	lsun_tower	99.80	99.48
90	orange2apple	65.93	85.61
	photo2ukiyoe	92.01	98.17
	cityscapes	100.00	99.66
	lsun_tower	99.60	98.86

Faces (preliminary)

Dataset	Proposed
progan_celeba	79.75
stargan_black_hair	97.26
stargan_blond_hair	96.56
stargan_brown_hair	96.76
stargan_male	96.24
stargan_smiling	96.06
glow_black_hair	86.56
glow_blond_hair	88.26
glow_brown_hair	86.18
glow_male	87.11
glow_smiling	83.04
stylegan2-0.5	77.18
stylegan2-1	72.63
avg	87.96

[1] F.Marra, D.Gragnaniello, L.Verdoliva, G.Poggi, "Do GANs Leave Artificial Fingerprints?" IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR), 2019
[2] F. Marra, D. Gragnaniello, D. Cozzolino, and L. Verdoliva, "Detection of GAN-Generated Fake Images over Social Networks," IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR), 2019