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Context
Main problems of SVMs

• High computational complexity of training O(t3)

• High memory complexity of training O(t2)

• Need to fine-tune the models with hyperparameters
• Classification time linearly depends on number of SV (O(S))

Contribution
• Novel memetic algorithm for evolving reduced training set
• Proposed adaptive radial basis function with γ hyperparameter specific

to a training vector

Memetic Evolution of training set for SVM

Fig. 1. Assigning different
γ’s in the RBF kernel to differ-
ent T vectors can help better
“model” the SVM hyperplane
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Fig. 2. Visualization of memetic algorithm run. (a) presents the best solution
from the initial population, (b) The best solution after finishing evolution with
first γ from ~γ, (c) Shrank training set that will be used in next iteration with
subsequent γ. The shrinking procedure is based on the whole population, (d)
Solution after second evolution has ended. Added new support vectors marked
with red color crosses, (e) Adding next γ value marked with green vectors provided
worse classification performance, these support vectors will be removed, (f) final
solution for given dataset containing three different γ values.

Experimental Validation

Datasets
We used 96 datasets that were divided into 5 folds containing training, val-
idation (V ) and test set (Ψ) in the 3:1:1 proportion, respectively. Each
evolutionary algorithm was run 10 times per fold.

Experimental Results

Tab. 1 The ranking test over MCC (together with the statistical importance
of the differences between our MA and the corresponding approach), for various
imbalance ratio ranges. The meanings of ns, *, **, ***, and ****: p > 0.05,
p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001. The best results are boldfaced.

Algorithm Q1 Q2 Q3 Q4 All
GNB 7.63∗∗ 9.04∗∗∗ 8.58∗∗∗∗ 6.50∗∗∗∗ 7.94∗∗∗∗
LR 6.08ns 5.79ns 5.75ns 5.29ns 5.73∗∗∗∗

k-NN(3) 5.33ns 4.88ns 4.67ns 5.50ns 5.09∗
k-NN(5) 5.50ns 5.21ns 5.67ns 5.67ns 5.51∗∗∗
k-NN(7) 5.21ns 5.63ns 6.58∗∗ 6.25∗∗ 5.92∗∗∗∗

SVM(Linear) 6.67ns 5.63ns 6.42∗∗ 5.71∗∗ 6.10∗∗∗∗
SVM(Poly) 5.92ns 4.88ns 5.38ns 4.75ns 5.23∗∗
SVM(RBF) 7.92∗∗ 10.71∗∗∗∗ 9.83∗∗∗∗ 8.13∗∗∗∗ 9.15∗∗∗∗

MASVM 5.17ns 4.92ns 4.79ns 5.04ns 4.98ns
MASVM(MG) 4.75ns 4.46ns 3.83ns 4.00ns 4.26ns

Ours 3.75 4.42 2.92 3.21 3.57

AUC = 0.996, #SV = 199 AUC = 0.979, #SV = 43
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Fig. 3 Example visualizations of the SVs and decision hyperplanes obtained for
different methods, together with the AUC (over Ψ) and the number of SVs (#SV).
For MASVM(MG) and the proposed MA, we have: γ = 102 (blue), γ = 103 (red),
γ = 104 (green), and γ = 105 (orange).

Conclusions
• Our technique outperforms SVMs optimized using other evolutionary

methods and other supervised learners.
• It delivers consistent results across sets of various characteristics.
• Our technique can be easily applied in imbalanced classification, where

it outperformed all other methods.
• Assigning various γ’s to different training vectors is useful in heteroge-

neous parts of the input space, as visually shown for our 2D datasets.
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