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Problem

Generating synthetic samples to create balanced datasets has
two challenges:
• Over-constraint: generate overlapped synthetic samples

for the inland because of improper clustering.
• Over-generation of erroneous samples [3]: generate

synthetic samples for the trapped based on the nearest
minorities.

Experimental Evaluation
• Datasets: Five classical Imbalanced data sets from UCI

repository

• Baselines: Nine other oversampling algorithms
• Classifiers: Linear-SVM and C4.5 decision tree
• Metrics: F1-score, G-mean, AUC [4]

Reference

Approach

Clustering
• Adopt CFSFDP clustering algorithm to separate two dense 

clusters [5].
• Centers are with high local density (high 𝝆) and 

large relative distance (high 𝜹) to points with 
higher density

Generation
Use interpolation-based method for generating synthetic
inland and borderline example.
• Inland: the candidate set is the same cluster 𝐿$\ 𝑥&, where

𝑥& ∈ 𝐿$.
• Borderline: the candidate set is 𝑘*+, nearest majority

neighbors 𝑁*+,(𝑥&).

Propose a novel approach of generating safe boundary for
generating synthetic trapped example.
• Trapped: for any trapped example t ∈ 𝑇, the candidate set

is 𝑇 and nearest majority neighbors set 𝑀.
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Given a distance matrix [𝑑&,]H∗H, for every minority example 𝑥&
compute:
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Definition

• Imbalanced data: unequal distribution of different class
samples [1, 2].

• Interpolation-based oversampling: the synthetic samples
are interpolated along the line segment between the
reference and candidate points.

• F1-score: our PABIO achieves the best results of all five data
sets.

• G-mean: our PABIO outperforms most of the five data sets.
• Robustness:

• Vowel dataset (no trapped example), PABIO
discovers more dense minority groups, and
generates synthetic inland samples safely.

• Abalone dataset (only has trapped examples),
PABIO learns safe boundary and expands minority
efficiently.

Hyperparameters

• Adopt the recommended values of the common parameters
in PAIO

• If the hyperparameter 𝑑$ of clustering falls in appropriate
value range, it would affect the performance of our proposed
PABIO.

Conclusion

• Imbalance data usually compromise the performance of
standard classifiers.

• Not only imbalance ratio hinder classifier, but also noise
and small disjuncts hinder classifier.
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