Dual-Memory Model for Incremental Learning:
The Handwriting Recognition Use Case
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INTRODUCTION

Deep learning pros and cons:
End-to-end learning, representation learning
® Current models don’t easily adapt to new data/class;

® Their training only converges when fed with huge labeled databases;
® The need for energy and computing power is constantly increasing;
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We propose here an original, dual memory model inspired from Baddeley model.
We use it to learn first (Task1) printed digits and then (Task2) handwritten digits, incrementally.

INITIAL LEARNING: TASK 1
The machine is like a 6-year-old child who is learning to
distinguish (printed) digits.

o Visual sketchpad: A CNN (2 conv/pooling layers +2
dense layers) is trained to recognize digits (+2K fonts) =
feature extraction (256 dimensions).

o Implicit memory: Long-Term Memory (LTM) is a
random forest (100 trees, max-depth=22) trained on these
feature vectors.

A copy of the LTM is stored in the Short-Term Memory (STM).

9 Explicit memory: Features are decorrelated (using PCA)
and statistical 1D-parameters (i, ) are stored to regenerate
Taskl samples (see Enhancement).
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CONCLUSION
This study propose a translation of Baddeley's model
into a model capable of learning incrementally as the
human brain.
e |tis able to learn incrementally new data and classes (recent
development);
e |t avoids catastrophic forgetting (of previous tasks);
e |t gets closer to the functioning of human memory;
¢ It has limited computing power and energy requirements;
e We found a good approximation of the minimum data
needed to learn incrementally Task2 (K = 5; N = 100).

INCREMENTAL LEARNING: TASK 2
Our 6-year-old child lives experiences (class, homework)
during the day.
At night, the child integrates all the day’s experiences.

0 Enhancement:
The STM buffer (FIFO batch: N samples/experiences) is used to
train the STM using the incremental growing tree strategy.

The explicit memory is used to avoid catastrophic forgetting.
During the K enhancement (K Batches), the STM is updated
progressively.
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e Consolidation:
The STM is optimized by applying Sequential Backward
Selection on trees.

If it performs better than the LTM on both tasks, it is stored in
the LTM.
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Task 1 Task 2 Model size
Initial training 0.77 100%
Incremental training




