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Motivation
•  Deep-learning-based methods are very popular and   

successful in different classification tasks
•  It demands labeled data for proper training and can only 

deal with “seen” class samples
• LSTMs  can recognize “unseen” word classes, but requires 

fully transcribed text lines and sometimes a  language model
• Labeling data demands human intervention, hence costly
• “Zero-shot learning” (ZSL) algorithms with proper feature 

and class attribute signature can counter this situation and 
we proposed a ZSL based method here for handwritten 
recognition.

  Novelty/Challenges
• Zero-Shot Learning(ZSL) mainly has been explored for 

object detection
• To the best of our knowledge there is no work on any Indic 

script word recognition in  ZSL perspective
• Signature/Semantic attribute space is very rich in object 

domain with information on colour and texture but such 
information is absent in handwritten text 

 
 
                

Methodology

• 250 different word classes of place names in the State of 
West Bengal in India

• Data collection form contains 8 classes with space to 
provide 3 samples of handwriting for each class.

• Elastic morphing based off-line data augmentation
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Experimental Framework

•  
• Learning – is the mapping  of  basic shape attributes and deep 
• features in matrix “V”:                       
               V = (KT K + γI)−1 KY S(ST S + λI) −1

  K is a regular kernel matrix for example “Gaussian”,                
 “Polynomial” etc

 λ makes the instances on the attribute space more invariant
 The value of γ balances the values of signature attribute
 Classification - calculated per instance ‘k’ in K,where K could 

be a Gaussian Kernel 

 

 “Unseen” word class images could be recognized using “Zero-shot” 
learning techniques with shape strokes as attribute signatures

  Efficacy of different CNN architectures were analyzed in the 
context of ZSL-based word image recognition
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Architecture Fold 0 Fold 1 Fold 2 Fold 3 Fold 4
       GoogleNet 35.09% 41.32% 30.28% 28.64% 39.66%

ResNet152 29.26% 28.52% 35.88% 26.07% 27.36%

XceptionNet 44.76% 35.45% 41.43% 38.21% 44.57%

Performance with respect to different CNN architecture as 
the feature extractor

Performance with respect to different signature attributes

Sig. Attribute Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

S-Alph. 23.88% 32.35% 33.15%      29.66% 19.88%

4S-Sp.-Alph. 49.89% 39.06%  48.98%      49.06%  50.53%

Method Fold 0 Fold 1 Fold 2 Fold 3 Fold 4
AREN 26.41% 27.24% 31.61% 25.11% 30.31%

         Our Method 49.89% 39.06%     48.98%    49.06%     50.53%

 Performance of AREN on same data

The basic shape attributes marked in red in different Bengali 
characters

Data Fold 0 Fold 1 Fold 2 Fold 3 Fold 4
Training 47360 47412 47300 47340 47370

        Validation 11790 11800 11774 11780 11790

Testing 14796 14736 14868 14820 14787

Training, testing  & validation data after data augmentation

Comparison
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 is the signature attribute of ith test class

•  Five-fold cross validation with 50 test classes in each fold 
•  Different CNN architectures to generate features for word                 
  recognition.

          - training from scratch
          - no data-flipping inside the architecture
   Features were extracted from output of FC1 layer of  VGG16        
  

•   For InceptionNet, XceptionNet and ResNet, features were                
   extracted from the average pool layer  

•   Deep-learned features along with shape attribute signature  features 
   are being to the Zero-shot learning algorithm.

 
 

Results and Discussion
Schematic diagram of our customized VGG16 architecture as used in our experiment.

Conclusions
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