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Goal: build robust descriptors to register point clouds 

without requiring an initial alignment
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2. What is the Local Reference Frame (LRF)?

LRF: reference system 

computed using only local 

information (green points)

Learning scheme:

Loss functions:

PointNet backbone

Tnet: Transformation Network

MLP: Multi Layer Perceptron

LRN: Local Response Normalisation
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Descriptors (illustration)

Training

- 3DMatch dataset [9]

- about 16K point-cloud pairs

- each pair is 256 descriptors

- 40 epochs

Testing

- 3DMatch and ETH dataset [7]

Evaluation

- Feature Matching Recall [7]

3DMatch dataset (train RGBD → test RGBD) 

ETH dataset (train RGBD → test LIDAR) 

6. Conclusions CODE AVAILABLE

https://github.com/

fabiopoiesi/dip

Our method highlights
- Achieves high scalability because it computes descriptors 

over local patches

- Produces rotation-invariant descriptors thanks to a Local 

Reference Frame transformation

- Learns an attention mechanism to quantify the quality of 

each descriptor
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