

Multi-Resolution Fusion and Multi-scale Input Priors Based Crowd Counting

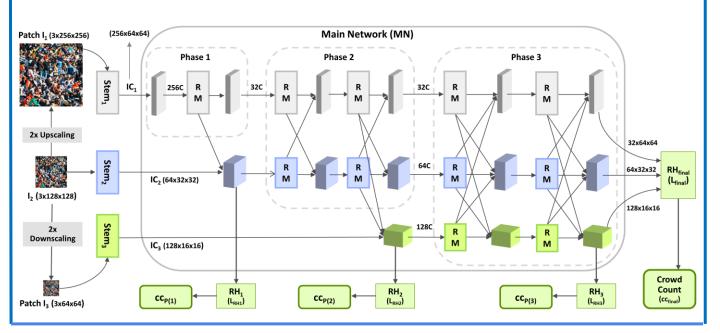
ICPR28

Usman Sajid, Wenchi Ma, and Guanghui Wang {usajid, wenchima, ghwang}@ku.edu

OBJECTIVE & CONTRIBUTIONS

Problem: Crowd counting in low to high density scenarios in given static images.

Contributions:


- 1) Designed a new fusion resolution feature-level based end-to-end crowd still counting approach for images that effectively deals with significant variations of crowd-density. lighting conditions, and large perspective:
- 2) Proposed an alternative patch rescaling module by more effectively using the input priors;
- 3) Outperformed the state-ofthe-art methods, including the PRM based schemes, by a large margin with up to 10% improvements.

EXPERIMENTS

	ShanghaiTech Dataset		UCF-QNRF Dataset		AHU-Crowd Dataset		
Method	MAE	RMSE	MAE	RMSE	Method	MAE	RMSE
055 (00)					DPM [8]	395.4	-
CFF [30]	65.2	109.4	93.8	146.5	BOW-SVM [7]	218.8	_
RRSP [33]	63.1	96.2	-	-	DOTT OTTM[7]	210.0	
CAN [21]	62.3	100.0	107	183	Ridge Regression [6]	207.4	-
TEDNet [17]	64.2	109.1	113	188			
L2SM[38]	64.2	98.4	104.7	173.6	Hu et. al. [14]	137	-
BL [21]	62.8	101.8	88.7	154.8	DSRM [41]	81	129
ZoomCount [27]	66.6	94.5	128	201	ZoomCount [27]	88.2	126.1
PRM-Based [28]	67.8	86.2	94.5	141.9	PRM-Based [28]	74.9	111
v5 (ours)	67.1	81.0	96.9	130.1	v5 (ours)	60.2	91.7

The Proposed Architecture

The original 128×128 input patch (I_2) is used to produce the new up-scaled (I_1) and down-scaled (I_3) input priors, which go through their respective stems (stem₁, stem₂, stem₃). The resultant initial channels (IC_1 , IC_2 , IC_3) then pass through the phase-based main network, containing three deep columns/branches with the residual modules (RM). Multi-resolution fusion regularly occurs between these columns, followed by passing through the auxiliary (RH₁, RH₂, RH₃) and the final (RH_{fina}l) crowd regression heads to yield the respective crowd counts (ccp(1), ccp(2), ccp(3), and cc_{f inal}). The final crowd count for the input patch (I_2) is the weighted average of these crowd estimates.

