

Audio-based Near-Duplicate Video Retrieval with Audio Similarity Learning

Pavlos Avgoustinakis¹, Giorgos Kordopatis-Zilos¹, Symeon Papadopoulos¹,

Andreas L. Symeonidis², Ioannis Kompatsiaris¹ ¹Information Technologies Institute, CERTH

²Aristotle University of Thessaloniki

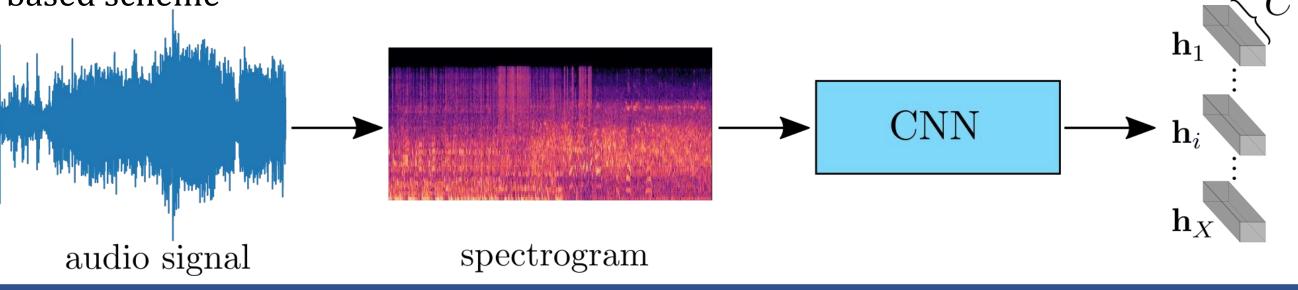
Problem statement

Duplicate Audio Video Retrieval (DAVR)

• Given a video query, search a video database and retrieve videos that share the same audio content

Video database Query video **Retrieved videos** = similarity

Proposed approach


- AuSiL: Audio Similarity Learning network
- Extract descriptors from the intermediate layers of a pre-trained CNN fed with Melspectrograms of videos' audio channels.
- Generate a similarity matrix containing the pair-wise segment similarities between two compared videos.
- Robustly capture temporal similarity patterns between videos through a CNN network

Proposed approach

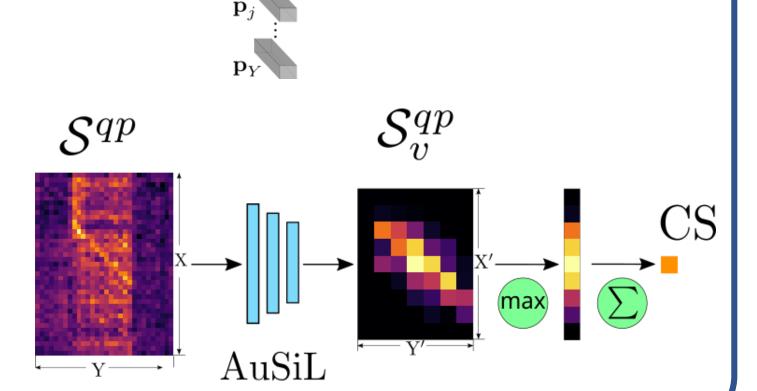
Feature extraction

Feature vector composition

- Extract Mel-spectrograms from audio signal
- Divide spectrograms to overlapping time segments
- Employ a pre-trained CNN [1]
- Apply Maximum Activation of Convolutions (MAC) on intermediate CNN layers
- Concatenate the K extracted feature vectors.
- Refine vector representations
 - Perform PCA whitening for feature decorrelation.
 - Weigh audio segments based on their captured information through an attentionbased scheme

Similarity calculation

Similarity Matrix


- Contains the similarity scores between the audio feature vectors of two compared videos.
 - Let $Q \in \mathbb{R}^{X \times C}$ and $P \in \mathbb{R}^{Y \times C}$ the video tensors of two videos q, p with X and Y audio segments
 - Dot product between pairs of feature vectors.

$$S^{qp} = Q \cdot P^T$$

Similarity Calculation

- Feed similarity matrix to AuSiL network [2]
 - Similarity learning four-layer CNN
- Captures the temporal structures in the similarity matrix
- Chamfer Similarity on the AuSiL output

$$CS(q,p) = \frac{1}{X'} \sum_{i=1}^{X'} \max_{j \in [1,Y']} Htanh(\mathcal{S}_v^{qp}(i,j))$$

 \mathcal{S}^{qp}

Training AuSiL.

Triplet Loss

- Force network to assign higher similarity scores to relevant video pairs and lower to irrelevant ones.
- Given an anchor, a positive and a negative video (v, v^+, v^-) and a margin parameter γ $\mathcal{L}_{tr} = \max\{0, CS(v, v^{-}) - CS(v, v^{+}) + \gamma\}$

Similarity Regularization Loss

Penalizes high values in the input of hard tanh that would lead to saturated outputs

$$\mathcal{L}_{reg} = \sum_{i=1}^{X'} \sum_{j=1}^{Y'} \left| \max\{0, \mathcal{S}_{v}^{qp} - 1\} \right| + \left| \min\{0, \mathcal{S}_{v}^{qp} + 1\} \right|$$

Video triplets

- Organize training dataset on triplets of video.
- Generate pairs of video with related audio content.
 - Due to lack of audio level annotation, generate pairs with related visual content
 - Select only the ones that are close in the feature space

$$D(v, v^+) < 0.175$$

- Select hard negatives.
 - Negative videos with anchor-negative distance lower than anchor-positive distance plus a margin value

$$D(v,v^-) < D(v,v^+) + d$$

 $D(\cdot,\cdot)$: Euclidean distance of videos' global averaged feature vectors

Evaluation setup.

Training dataset VCDB

- 528 base videos with 9,236 copied segments.
- 100,000 distractor videos.
- 5.8 million generated video triplets.

Evaluation datasets

Datasets with audio annotation FIVR-200K_{\alpha}

- Derived from visual annotations of FIVR-200K
- Manual annotation for DAVR problem
- 76 video queries and 3,392 audio duplicate pairs
- FIVR-5K_{α}: a subset of FIVR-200K_{α} with 50 randomly selected queries intended for quick comparisons

SVD _{\alpha}

- Derived from visual annotations of SVD
- Manual annotation for DAVR problem
- 167 queries and 1,492 audio duplicate pairs

Datasets with visual annotation FIVR-200K

- Fine-grained incident video retrieval
- 225,960 videos, 100 queries and three retrieval tasks

SVD

- Near-duplicate video retrieval
- 1,206 video queries, 34,020 labeled and 526,787 unlabeled videos

EVVE

- Event-based video retrieval
- 620 queries and 2,375 database videos

Experiments

Ablation Study

Timestep impact

Time step	FIVR-5 K_{α}	SVD_{α}
1000	0.794	0.903
500	0.789	0.915
250	0.787	0.928
125	0.790	0.940

Contribution of each component

MAC: Extracted CNN features

AuSiL: Proposed approach

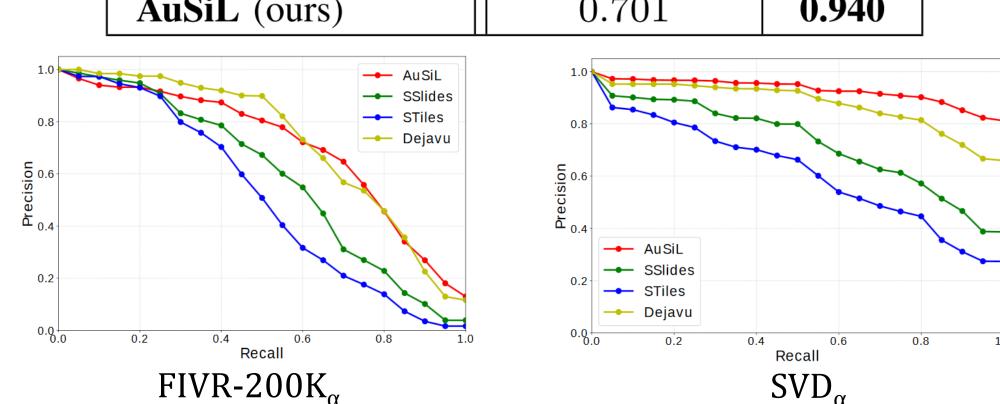
W: PCA whitening

A: Attention layer

Network Components	FIVR-5K α	\mathbf{SVD}_{lpha}	
MAC	0.656	0.891	
MAC + W	0.740	0.932	
MAC + W + A	0.742	0.934	
AuSiL	0.794	0.940	

Transfer learning settings

Transfer	Update	$ $ FIVR-5K $_{\alpha}$	$ $ SVD $_{\alpha}$
√	×	0.794	0.940
√	√	0.588	0.857
×	√	0.445	0.764


Impact of margin hyperparameter ν

gamma (γ)	0.4	0.6	0.8	1.0	1.2
FIVR-5 K_{α}	0.764	0.761	0.786	0.794	0.767
\mathbf{SVD}_{lpha}	0.903	0.895	0.937	0.940	0.919

Comparison against state-of-the-art

Dunlicate audio video retrieval (DAVR)

Duplicate audio video re	etrievai (DAVR)		
Method	FIVR-200K $_{\alpha}$	\mathbf{SVD}_{lpha}	
Dejavu [17]	0.726	0.874	
Spectro Slides [14]	0.588	0.716	
Spectro Tiles [16]	0.510	0.605	
AuCit (ourg)	0.701	0.040	

- Evaluation on audio speed transformations
- Generate duplicates by altering the speed of audio signals
 - Exclude original audio duplicates from the dataset

Method	$ \mathbf{FIVR-200K}_{\alpha}^T $	\mathbf{SVD}_{lpha}^{T}
Dejavu [17]	0.443	0.741
AuSiL (ours)	0.865	0.923

Visual-based video retrieval tasks

Method	FIVR-200K			SVD	EVVE
	DSVR	CSVR	ISVR	SVD	EVVE
Dejavu [17]	0.352	0.324	0.230	0.477	0.160
Spectro Slides [14]	0.288	0.269	0.189	0.406	0.146
Spectro Tiles [16]	0.249	0.228	0.159	0.323	0.144
AuSiL (ours)	0.327	0.310	0.232	0.516	0.288
Best visual	0.892	0.841	0.702	0.785	0.631

References

[1] A. Kumar, M. Khadkevich, and C. Fugen, "Knowledge transfer from weakly labeled audio using convolutional neural network for sound events and scenes," in ICASSP, 2018.

[2] G. Kordopatis-Zilos, S. Papadopoulos, I. Patras, and I.Kompatsiaris, "ViSiL: Fine-grained spatio-temporal video similarity learning," in ICCV, 2019

https://github.com/mever-team/ausil