Hcore-Init: Neural Network Initialization based on Graph Degeneracy
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Introduction

Goal: Extraction of meaningful information from a Neural Network (NN) architecture:
m Construction of a Degeneracy-based Decomposition of a Neural Network
architecture.

m Capitalization on the graph structure of a Neural Network for performance
iImprovement.

Contributions:

m A unified method of constructing the graph representation of a neural network as a
block composition of the given architecture.

m A new degeneracy framework, namely the k-hypercore, extending the concept of
k-core to bipartite graphs.

m A novel weight initialization scheme, Hcore-init by using the information provided by
the weighted version of the k-hypercore of a NN extracted graph, to re-initialize the
weights of the given NN.
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Simplified Neural Network representations as graphs

(https://www.asimovinstitute.org/author/fjodorvanveen/)

Preliminary Concepts and Definitions

INITIALIZATIONS METHODS:

Glorot Initialization [Glorot, X. & Bengio, Y. in AISTATS (2010)]
- The weights W are drawn from a normal distribution.
- We ensure E[W] = 0 Var(w;) = ——, where fanin is the number of incoming
neurons.
» Using both outgoing and ingoing neurons: Var(w;) = ;——1—.

Kaiming He Initialization [He, K., Zhang, X., Ren, S., & Sun, J. In ICCV (2015)]

Unlike the Glorot initialization, this method takes into account the activation function

used.

- The weights W are drawn from a normal distribution.

- In the case of a ReLU: E[W] = 0 and Var[W] = £, where I is the index of the /-th
layer and n the number of neurons in the given layer.

Note that the condition E{W| = 0 is essential for the Variance to be optimal.

HYPERGRAPH:

A hypergraph is a generalization of a graph in which an edge can join any number of
vertices. It can be represented as ‘H = (V, Ey) where V is the set of nodes, and Ey is
the set of hyperedges, i.e. a set of subsets of V. Therefore E; is a subset of P(V).

Bipartite Graph

Hypergraph

Hvperedges
Bipartite graph as the incidence graph of a hypergraph

Hence, we can transform any given MLP or Convolutional NN into a series of
bipartite graphs.

Hypercore (Hcore) Decomposition

HCORE DEFINITION:
Given a hypergraph H = (V, E3;) we define the (k, I)-hypercore as a maximal
connected subgraph of H in which all vertices have hyperdegree at least k and all

hyperedges have at least / incident nodes.
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Hcore-init: Weight Initialization

METHOD: The graph-based initialization method consists of:

Pretraining of NN for x epochs.

Construction of weighted graph structure of NN architecture.

Hypercore decomposition of the contstructed graph.

Weight initialization of the NN based on the output hypercore values.

Weights on MLP: Re-initialization with weights drawn from a normal distribution with
expectancy:
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Hence w; ; follow a N/ (M, %) which variance is from the He initilization method.
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CNN: For a given filter W € RP*H its values are re-initialized with the following method:

m we define m for a given filter W as m(W") = z>";¢; and m(W~) = > c;, f
mW") —m(W~) > 0then M = m(W™)

melseM=—mW).

Hence the general formula for m is given by:

M = sign(argmax(m(W"), m(W™))) max(m(W™"), m(W™))
where sign(W*) =1 and sign(W—) = —1.

PROPOSITION:
Let Xq and X> two centered i.i.d. random variables with symmetric distribution.
. We define X™ = max{X;,0}, X~ = max{Xo,0}, and a real valued measurable
. function f: R, — R such that E[|f(X")|] < oo and E[|f(X7)|] < oc.
‘Then:
. m X, X are positive i.i.d. random variables.
m The random variable:

M = sign(argmax(f(X ™), f(X™)))max(f(X"), f(X ™))
= +1, is centered, i.e. E[M] =0 .
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Experimental Evaluation
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Test accuracy (left) and train loss (right) on CIFAR-10 on a fully connected convolutional neural network.
The x in the label Hcore-init-x stands for the number of pretraining epochs before applying hcore-init.

CIFAR-10 CIFAR-100 MNIST

Kaiming He = 64.62 32.56 98,71
Hcore-Init* 65.22 33.48 98.91

Hcore-Init-1 64.91 32.87 98.59
Hcore-Init-5 64.41 32.96 98.70
Hcore-Init-10  65.22 33.41 98.81
Hcore-Init-15 64.94 33.45 98.64
Hcore-Init-20 65.05 33.39 98.87
Hcore-Init-25 64.72 33.48 98.91

Table: Top Accuracy results over initializing the full model, only the CNN and only the FCNN for CIFAR-10,
CIFAR-100, and MNIST. Hcore-Init* represent the top performance over all the pretraining epochs
configurations up to 25
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