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Introduction

Goal: Extraction of meaningful information from a Neural Network (NN) architecture:

Construction of a Degeneracy-based Decomposition of a Neural Network
architecture.
Capitalization on the graph structure of a Neural Network for performance
improvement.

Contributions:

A unified method of constructing the graph representation of a neural network as a
block composition of the given architecture.
A new degeneracy framework, namely the k -hypercore, extending the concept of
k-core to bipartite graphs.
A novel weight initialization scheme, Hcore-init by using the information provided by
the weighted version of the k -hypercore of a NN extracted graph, to re-initialize the
weights of the given NN.

Simplified Neural Network representations as graphs

(https://www.asimovinstitute.org/author/fjodorvanveen/)

Preliminary Concepts and Definitions

INITIALIZATIONS METHODS:

1 Glorot Initialization [Glorot, X. & Bengio, Y. in AISTATS (2010)]
� The weights W are drawn from a normal distribution.
� We ensure E [W ] = 0 Var(wi) =

1
fanin, where fanin is the number of incoming

neurons.
� Using both outgoing and ingoing neurons: Var(wi) =

1
fanin+fanout.

2 Kaiming He Initialization [He, K., Zhang, X., Ren, S., & Sun, J. In ICCV (2015)]
Unlike the Glorot initialization, this method takes into account the activation function
used.
� The weights W are drawn from a normal distribution.
� In the case of a ReLU: E [W ] = 0 and Var[W ] = 2

nl , where l is the index of the l-th
layer and n the number of neurons in the given layer.

Note that the condition E [W ] = 0 is essential for the Variance to be optimal.

HYPERGRAPH:
A hypergraph is a generalization of a graph in which an edge can join any number of
vertices. It can be represented asH = (V ,EH) where V is the set of nodes, and EH is
the set of hyperedges, i.e. a set of subsets of V . Therefore EH is a subset of P(V ).

Bipartite graph as the incidence graph of a hypergraph

Hence, we can transform any given MLP or Convolutional NN into a series of
bipartite graphs.

Hcore-init: Weight Initialization

METHOD: The graph-based initialization method consists of:
1 Pretraining of NN for x epochs.
2 Construction of weighted graph structure of NN architecture.
3 Hypercore decomposition of the contstructed graph.
4 Weight initialization of the NN based on the output hypercore values.

Weights on MLP: Re-initialization with weights drawn from a normal distribution with
expectancy:

for all i if wi,j ≥ 0, M =
c+

j∑
1≤k≤n2

c+
k
,

else M =
c−j∑

1≤k≤n2
c−k

.

Hence wi,j follow aN (M, 2
n2

2
) which variance is from the He initilization method.

CNN: For a given filter W ∈ RH×H its values are re-initialized with the following method:
we define m for a given filter W as m(W+) = 1

H2

∑
j c+

j and m(W−) = 1
H2

∑
j c−j , if

m(W+)−m(W−) > 0 then M = m(W+)

else M = −m(W−).
Hence the general formula for m is given by:

M = sign(argmax(m(W+),m(W−))) max(m(W+),m(W−))

where sign(W+) = 1 and sign(W−) = −1.

PROPOSITION:
Let X1 and X2 two centered i.i.d. random variables with symmetric distribution.
We define X+ = max{X1, 0}, X− = max{X2, 0}, and a real valued measurable
function f : R+→ R such that E[|f (X+)|] <∞ and E[|f (X−)|] <∞.
Then:

X+, X− are positive i.i.d. random variables.
The random variable:

M = sign
(
argmax(f (X+), f (X−))

)
max

(
f (X+), f (X−)

)
with sign(f (X±)) = ±1, is centered, i.e. E[M ] = 0 .

Ensuring that using Kaiming He variance in our case is optimal.

Hypercore (Hcore) Decomposition

HCORE DEFINITION:
Given a hypergraphH = (V ,EH) we define the (k , l)-hypercore as a maximal
connected subgraph ofH in which all vertices have hyperdegree at least k and all
hyperedges have at least l incident nodes.

Hcore number of the hypergraph’s nodes

Experimental Evaluation

Test accuracy (left) and train loss (right) on CIFAR-10 on a fully connected convolutional neural network.
The x in the label Hcore-init-x stands for the number of pretraining epochs before applying hcore-init.

CIFAR-10 CIFAR-100 MNIST
Kaiming He 64.62 32.56 98, 71
Hcore-Init* 65.22 33.48 98.91
Hcore-Init-1 64.91 32.87 98.59
Hcore-Init-5 64.41 32.96 98.70
Hcore-Init-10 65.22 33.41 98.81
Hcore-Init-15 64.94 33.45 98.64
Hcore-Init-20 65.05 33.39 98.87
Hcore-Init-25 64.72 33.48 98.91

Table: Top Accuracy results over initializing the full model, only the CNN and only the FCNN for CIFAR-10,
CIFAR-100, and MNIST. Hcore-Init* represent the top performance over all the pretraining epochs
configurations up to 25
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