Hcore-Init: Neural Network Initialization based on Graph Degeneracy

Stratis Limnios^{1,2}, George Dasoulas^{1,3}, Dimitrios M. Thilikos⁴, Michalis Vazirgiannis¹ École Polytechnique France¹, Alan Turing Institute London², Noah's Ark Lab Huawei Technologies³, LIRMM Univ Montpellier/CNRS⁴

Introduction

Goal: Extraction of meaningful information from a Neural Network (NN) architecture:

- Construction of a Degeneracy-based Decomposition of a Neural Network architecture.
- Capitalization on the graph structure of a Neural Network for performance improvement.

Contributions:

- A unified method of constructing the graph representation of a neural network as a block composition of the given architecture.
- A new degeneracy framework, namely the k-hypercore, extending the concept of k-core to bipartite graphs.
- A novel weight initialization scheme, Hcore-init by using the information provided by the weighted version of the k-hypercore of a NN extracted graph, to re-initialize the

weights of the given NN.

(https://www.asimovinstitute.org/author/fjodorvanveen/)

Preliminary Concepts and Definitions	Hcore-init: Weight Initialization			
 INITIALIZATIONS METHODS: Glorot Initialization [Glorot, X. & Bengio, Y. in AISTATS (2010)] The weights W are drawn from a normal distribution. We ensure E[W] = 0 Var(w_i) = 1/fanin, where fanin is the number of incoming neurons. Using both outgoing and ingoing neurons: Var(w_i) = 1/fanin+fanout. 	 METHOD: The graph-based initialization method consists of: Pretraining of NN for <i>x</i> epochs. Construction of weighted graph structure of NN architecture. Hypercore decomposition of the contstructed graph. Weight initialization of the NN based on the output hypercore values. Weights on MLP: Re-initialization with weights drawn from a normal distribution with 			
	expectancy: • for all <i>i</i> if $w_{i,j} \ge 0$, $M = \frac{c_j^+}{\sum_{1 \le k \le n_2} c_k^+}$, • else $M = \frac{c_j^-}{\sum_{1 \le k \le n_2} c_k^-}$. Hence $w_{i,j}$ follow a $\mathcal{N}(M, \frac{2}{n_2^2})$ which variance is from the He initilization method.			
Note that the condition $E[W] = 0$ is essential for the Variance to be optimal. HYPERGRAPH: A hypergraph is a generalization of a graph in which an edge can join any number of vertices. It can be represented as $\mathcal{H} = (V, E_{\mathcal{H}})$ where V is the set of nodes, and $E_{\mathcal{H}}$ is the set of hyperedges, i.e. a set of subsets of V . Therefore $E_{\mathcal{H}}$ is a subset of $\mathcal{P}(V)$. Hypergraph	 CNN: For a given filter W ∈ ℝ^{H×H} its values are re-initialized with the following method: we define m for a given filter W as m(W⁺) = ¹/_{H²} ∑_j c_j⁺ and m(W⁻) = ¹/_{H²} ∑_j c_j⁻, if m(W⁺) - m(W⁻) > 0 then M = m(W⁺) else M = -m(W⁻). Hence the general formula for m is given by: M = sign(argmax(m(W⁺), m(W⁻))) max(m(W⁺), m(W⁻)) 			

Hypergraph

Bipartite Graph

Bipartite graph as the incidence graph of a hypergraph

Hence, we can transform any given MLP or Convolutional NN into a **series of bipartite graphs**.

Hypercore (Hcore) Decomposition

HCORE DEFINITION:

Given a hypergraph $\mathcal{H} = (V, E_{\mathcal{H}})$ we define the (k, I)-hypercore as a maximal connected subgraph of \mathcal{H} in which all vertices have hyperdegree at least k and all hyperedges have at least I incident nodes.

where sign(W^+) = 1 and sign(W^-) = -1.

PROPOSITION:

Let X_1 and X_2 two centered i.i.d. random variables with symmetric distribution. We define $X^+ = \max\{X_1, 0\}, X^- = \max\{X_2, 0\}$, and a real valued measurable function $f : \mathbb{R}_+ \to \mathbb{R}$ such that $\mathbb{E}[|f(X^+)|] < \infty$ and $\mathbb{E}[|f(X^-)|] < \infty$. Then:

X^+, X^- are positive i.i.d. random variables.

The random variable:

$$\label{eq:max} \begin{split} \pmb{M} &= \text{sign}\big(\text{argmax}(\pmb{f}(\pmb{X}^+), \pmb{f}(\pmb{X}^-))\big) \text{max}\big(\pmb{f}(\pmb{X}^+), \pmb{f}(\pmb{X}^-)\big) \\ \text{with sign}(\pmb{f}(\pmb{X}^\pm)) &= \pm \textbf{1}, \text{ is centered, i.e. } \mathbb{E}[\pmb{M}] = \textbf{0} . \end{split}$$

Experimental Evaluation

Test accuracy (left) and train loss (right) on CIFAR-10 on a fully connected convolutional neural network. The *x* in the label Hcore-init-*x* stands for the number of pretraining epochs before applying hcore-init.

	CIFAR-10	CIFAR-100	MNIST
Kaiming He	64.62	32.56	98,71
Hcore-Init*	65.22	33.48	98.91
Hcore-Init-1	64.91	32.87	98.59
Hcore-Init-5	64.41	32.96	98.70
Hcore-Init-10	65.22	33.41	98.81
Hcore-Init-15	64.94	33.45	98.64
Hcore-Init-20	65.05	33.39	98.87
Hcore-Init-25	64.72	33.48	98.91

Table: Top Accuracy results over initializing the full model, only the CNN and only the FCNN for CIFAR-10, CIFAR-100, and MNIST. Hcore-Init* represent the top performance over all the pretraining epochs configurations up to 25

This work was supported by ANR project DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-0010)

stratis.limnios@polytechnique.edu