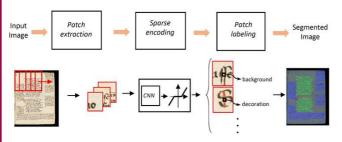
Ancient Document Layout Analysis: Autoencoders meet Sparse Coding



Homa Davoudi, Marco Fiorucci, Arianna Traviglia Center for Cultural Heritage Technology (CCHT), Istituto Italiano di Tecnologia (IIT) Email: {homa.davoudi, marco.fiorucci, arianna.traviglia} @iit.it

Historical Document Layout Analysis

- Segmenting image into homogeneous regions:
 Blocks of text, side notes, drawings, tables, etc.
- Key preprocessing step in various applications
- Still an open problem for historical documents:
 - o Usually lacking a structured text arrangement
 - High degradation
- Deep Neural Networks for Doc layout Analysis:
 - o pixel classification methods
 - o feature learning based methods
- A novel unsupervised representation learning method for DLA:
 - Based on the sparse representation of image patches

DLA pipeline


- Fixed size patches extracted.
- Sparse representation vector computed for each extracted patch
- A feed-forward network is trained to classify each pixel

Neural Sparse Coding

- Classical sparse coding :
 - restricted to the linear combination of sparse feature vector and dictionary atoms
- Recent DNN based sparse coding:
 - o Train the encoder in a supervised way.
 - o modelling the iterative optimization steps via unfolding a neural network.
- Our method:
 - o Encoder and sparse representation are trained simultaneously in an end-to-end fashion.

Sparse Representation Learning

- Architecture
 - o Encoder-Decoder with sparse latent Variables

 $\text{Classical Sparse Coding:} \qquad \min_{D} \frac{1}{T} \sum_{i=1}^{T} \min_{h^{(i)}} \frac{1}{2} \left\| \boldsymbol{x}^{(i)} - Dh^{(i)} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{h}^{(i)} \right\|_{1}$

Proposed architecture:

$$\min_{D} \frac{1}{T} \sum_{i=1}^{T} \min_{w} \frac{1}{2} \left\| x^{(i)} - G\left(D, S(F(x^{(i)}))\right) \right\|_{2}^{2} + \lambda \left\| h^{(i)} \right\|_{1}$$

- Training
 - Dictionary learning:

Main strength of sparse coding is in encoding algorithm (not the learned dictionary)[1]

- → We adapt the dictionary learned by VQ-VAE [2]
- Encoder Training:

Inspired by the ISTA algorithm, our encoder network is trained in an iterative way

- $\left\{ (1) \quad w_{t+1}^{temp} = w_t \alpha \nabla \left\| x G\left(D, h_{w_t}(x)\right) \right\|_2^2 \qquad \text{ Backward pass } \right.$
- (2) $h_{w_{t+1}}(x) = shrink(F_{w_{t+1}}^{temp}(x), \lambda \alpha)$

Experiments and Results

Experiments on DIVA-HisDB dataset [3]

		CB55			CSG18			CSG863			Overall		
		Acc(%)	IU(%)	F1(%)	Acc(%)	IU(%)	F1(%)	Acc(%)	IU(%)	F1(%)	Acc(%)	IU(%)	F1(%)
	Sparse encoding	98.35	79.81	72.14	92.96	77.82	59.30	97.74	73.21	58.72	96.35	76.94	63.38
	VQ-VAE	96.11	66.38	58.35	96.38	69.70	57.23	97.10	68.73	53.69	96.52	68.27	56.42
	1-layer CNN [4]	60	48	-	53	42	-	57	45	-	56/7	45	-
	CAE [3]	94.31	_	-	95.36	_	_	96.98	_	_	95.55	_	

Forward pass

References

- [1] A. Coates and A. Y. Ng, "The importance of encoding versus training with sparse coding and vector quantization," in ICML, 2011.
- [2] A. van den Oord, O. Vinyals et al., "Neural discrete representation learning," in Neurips 2017.
- [3] F. Simistira, M. Seuret, N. Eichenberger, A. Garz, M. Liwicki, and R. Ingold, "Diva-hisdb: A precisely annotated large dataset of challenging medieval manuscripts," in ICFHR 2016.
- [4] K. Chen, M. Seuret, J. Hennebert, and R. Ingold, "Convolutional neural networks for page segmentation of historical document images," in ICDAR 2017.