= Segmenting image into homogeneous regions:
o Blocks of text, side notes, drawings, tables, etc.

= Key preprocessing step in various applications

= Still an open problem for historical documents:

o Usually lacking a structured text arrangement
o High degradation

= Deep Neural Networks for Doc layout Analysis:

o pixel classification methods
o feature learning based methods

A novel unsupervised representation learning
method for DLA:

o Based on the sparse representation of image
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= Fixed size patches extracted.

= Sparse representation vector computed for each extracted
patch

= Afeed-forward network is trained to classify each pixel
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= Architecture
o Encoder-Decoder with sparse latent Variables
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Proposed architecture:
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= Training

o Dictionary learning:

Main strength of sparse coding is in encoding algorithm (not
the learned dictionary)[1]

— We adapt the dictionary learned by VQ-VAE [2]

o Encoder Training:

Inspired by the ISTA algorithm, our encoder network is
trained in an iterative way

(1) WP = w; — aV ||z — G (D, hy, (2)) |3 Backward pass

(2) huw,p () = shrink’(Fw:ﬂp(z), Aa) Forward pass
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(Experiments and Results
= Experiments on DIVA-HisDB dataset [3]

* Classical sparse coding :
o restricted to the linear combination of sparse
feature vector and dictionary atoms
= Recent DNN based sparse coding:
o Train the encoder in a supervised way.

o modelling the iterative optimization steps via
unfolding a neural network.

» Our method:

o Encoder and sparse representation are trained
simultaneously in an end-to-end fashion.
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