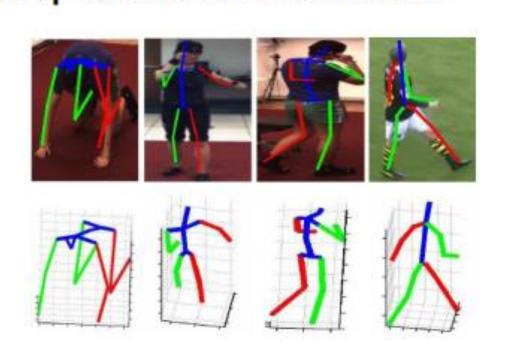
Unsupervised 3D Human Pose Estimation in Multi-view-multi-pose Video

Cheng Sun(Kyushu University), Diego Thomas(Kyushu University), Hiroshi Kawasaki (Kyushu University)

Introduction

- 3D human pose estimation aims to extract 3D poses of people from 2D images or videos.
- Methods can be divided into unsupervised methods and supervised methods.



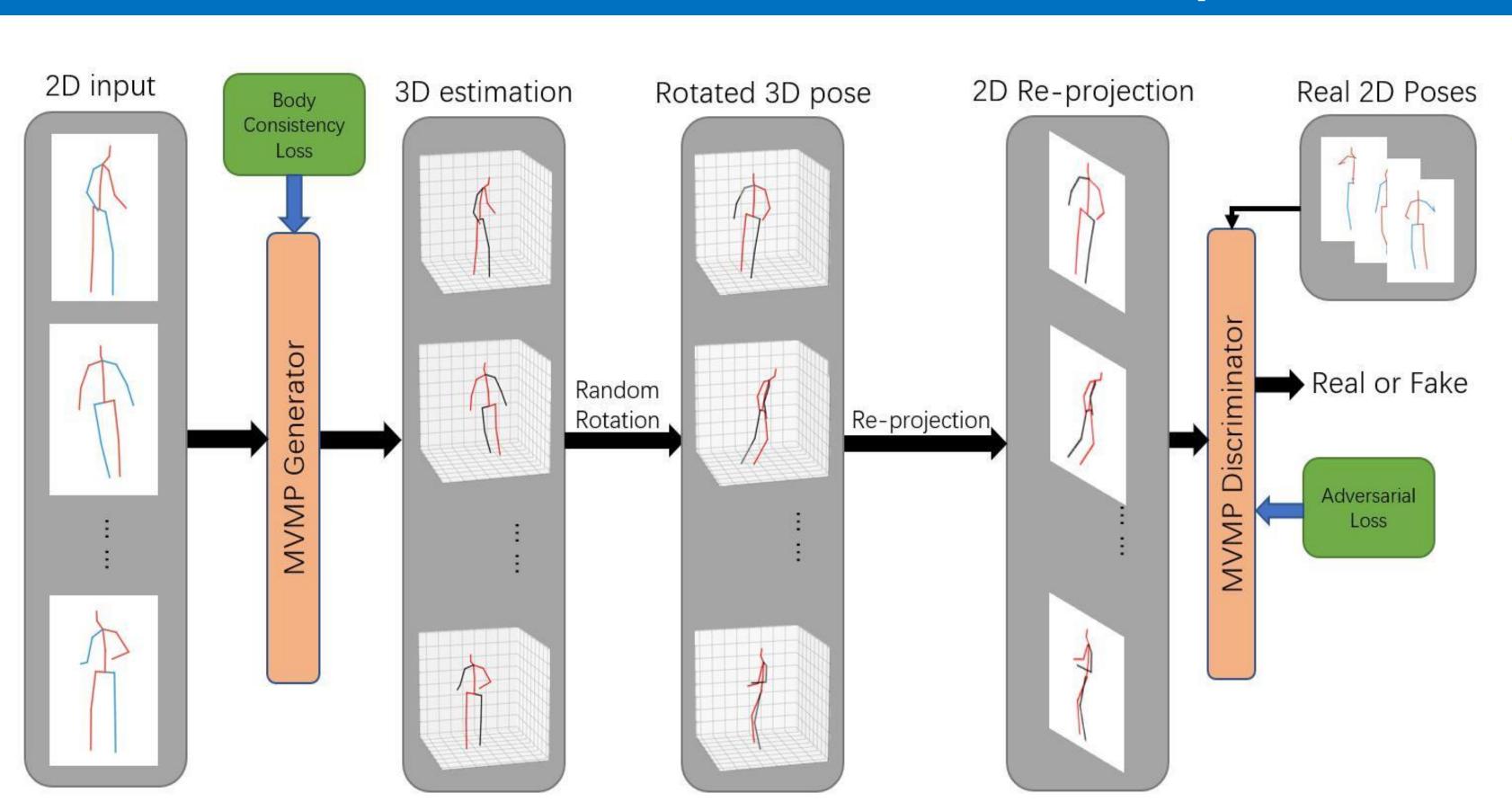
- Supervised methods: Accurate, need large-scale 3D datasets
- Unsupervised methods: Not very accurate, but can take advantage of large amount of in-the-wild 2D data

3D data: • Needs expensive equipment such as motion capture systems

- Needs careful calibration and elaborate setup with multiple sensors and bodysuits
- Impractical to use outside

2D data: • Easy and cheap to obtain, such as videos on YouTube

Proposed Strategies



Replacing GAN with WGAN

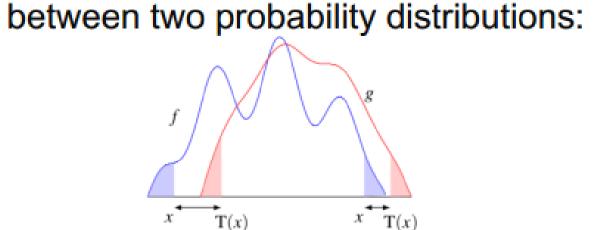
The balancing problem in GAN.

Discriminator's loss(blue) converges much faster than Generator's loss(orange)
 Original GAN's loss:

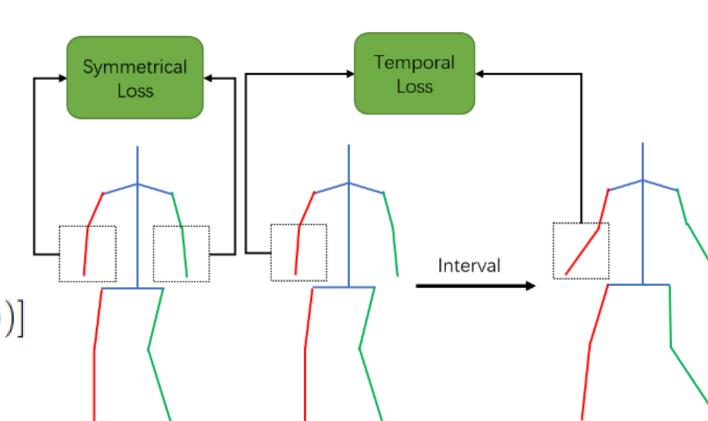
 $L = E_{x \sim P_{data}}[\log D(x)] + E_{x \sim P_G}[\log(1 - D(x))]$

• WGAN's loss: $L = E_{x \sim P_{data}} \left[f_w(x) \right] - E_{x \sim P_G} \left[f_w(x) \right]$

Wasserstein Distance measures distance



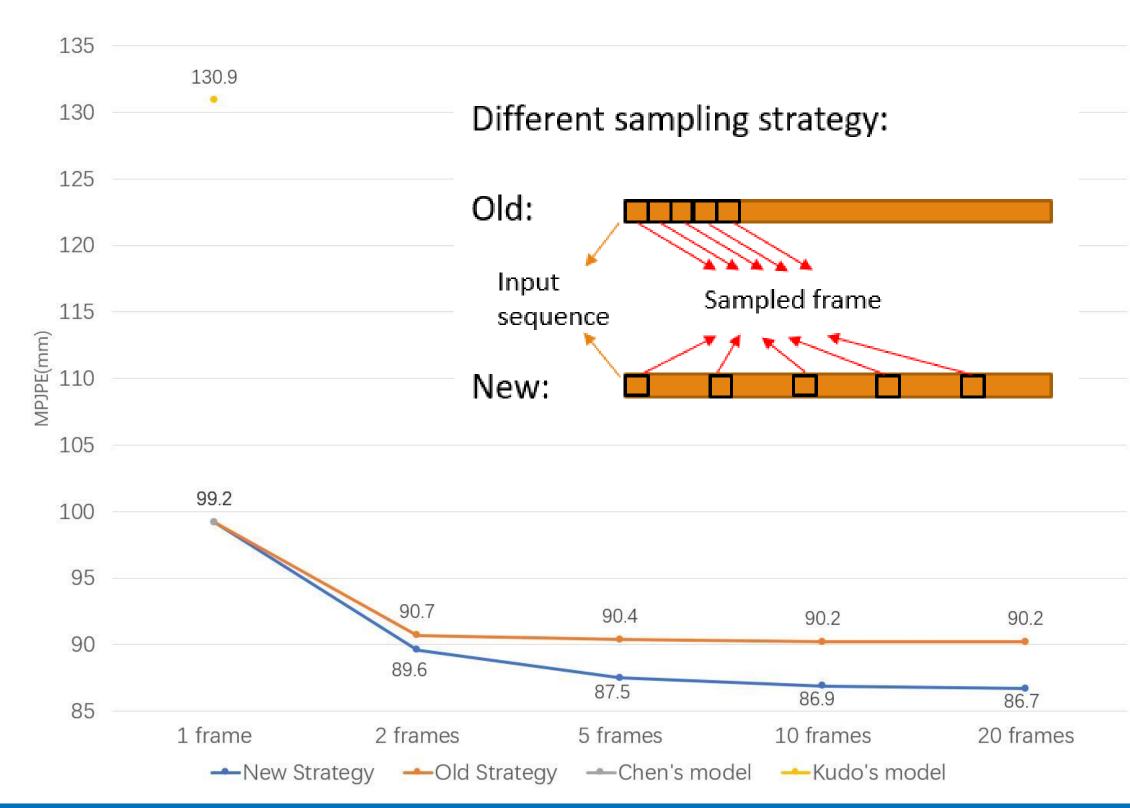
Body consistency constraints



- Referring to bone lengths in our model.
- Corresponding body parts should share same bone lengths in a single frame.
- Same body part should maintain same bone length in different frames.

Quantitative Results

supervised Martinez et al. [1] 51.3 Iskakov et al. [28] 19.5 self-supervised		58.1	59.0	60.5											
Iskakov <i>et al.</i> [28] 19.			59.0	20 E											
	9 20.0		07.0	69.5	78.4	55.2	58.1	74.0	94.6	62.3	59.1	65.1	49.5	52.4	62.9
self-supervised		18.9	18.5	20.5	19.4	18.4	22.1	22.5	28.7	21.2	20.8	19.7	22.1	20.2	20.8
Kocabas <i>et al</i> . [29] -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	60.6
semi-supervised															
Pavllo <i>et al.</i> [3] 45.3	2 46.7	43.3	45.6	48.1	55.1	44.6	44.3	57.3	65.8	47.1	44.0	49.0	32.8	33.9	46.8
weakly-supervised															
Wandt et al. [30] 77.:	5 85.2	82.7	93.8	93.9	101.0	82.9	102.6	100.5	125.8	88.0	84.8	72.6	78.8	79.0	89.9
Yang et al. [2] 51.:	5 58.9	50.4	57.0	62.1	65.4	49.8	52.7	69.2	85.2	57.4	58.4	43.6	60.1	47.7	58.6
unsupervised															
Kudo et al. [4] 125.	.0 137.9	107.2	130.8	115.1	127.3	147.7	128.7	134.7	139.8	114.5	147.1	130.8	125.6	151.1	130.9
Chen <i>et al</i> . [5] 97.	1 99.4	83.2	93.8	100.3	115.4	95.2	96.9	111.4	112.7	94.1	104.1	101.5	86.3	96.5	99.2
Ours(2-frame) 89.	9 92.4	78.5	91.8	93.0	97.1	88.7	86.4	97.1	101.0	89.2	98.3	90.3	71.5	79.0	89.6
Ours(5-frame) 88.	0 89.6	75.0	91.3	90.9	93.5	86.8	81.5	93.7	100.3	88.0	97.2	87.6	70.8	78.4	87.5
Ours(10-frame) 87.4	4 89.1	74.7	90.2	90.5	93.3	86.2	80.1	93.5	99.7	87.8	96.4	87.2	70.3	77.6	86.9
Ours(20-frame) 87.	1 88.7	74.6	90.0	90.3	93.4	85.7	80.2	93.1	99.9	87.4	96.3	87.2	70.0	77.1	86.7

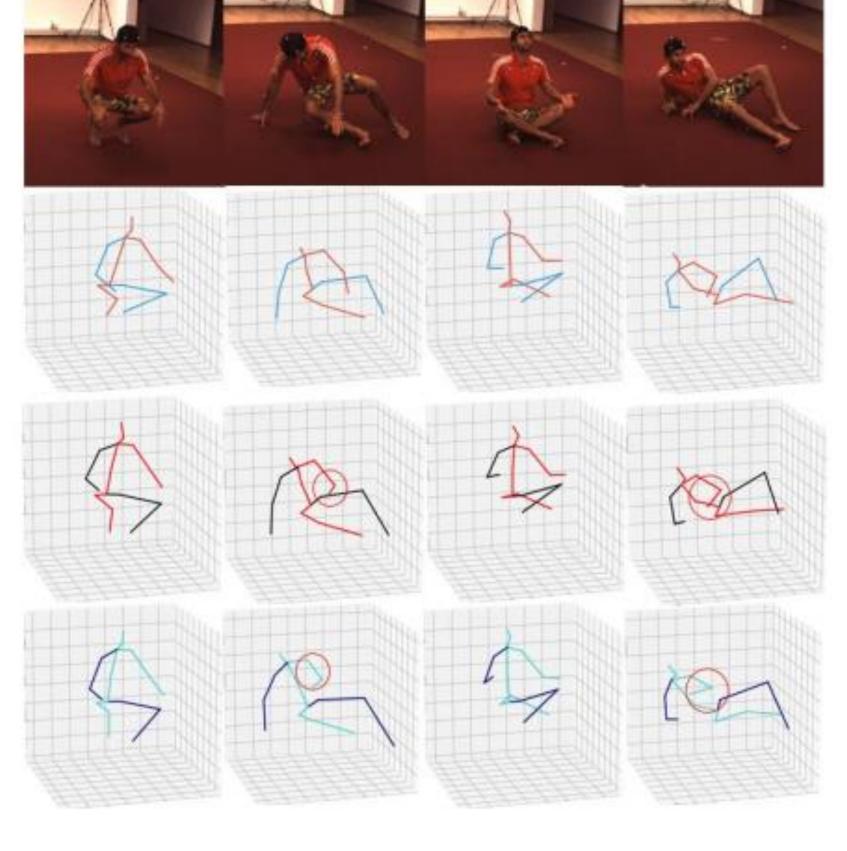


Qualitative Results

Input Video Ground Truth Our Result State-of-the-art method

Video of

Direction



Video of Sitting Down

Conclusion

- We propose our model which is extended from single-frame GAN approach to process multi-view-multi-pose(MVMP) 3D human pose estimation in videos. Our contributions include:
- Replace original adversarial loss with Wasserstein loss.
- Implement a loose body consistency constraint relying on the symmetry within a single frame and body consistency over different frames.
- Compare the strategy of sampling adjacent frames and the strategy of sampling frames with as big as possible intervals.
- With all the strategies our model outperforms state-ofthe-art unsupervised method.