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Introduction

Auto encoding models have been extensively studied in recent years. They pro-
vide an efficient framework for sample generation, as well as for analysing fea-
ture learning. Furthermore, they are efficient in performing interpolations between
data-points in semantically meaningful ways. In this paper, we introduce a method
for generating sequence samples from auto encoders trained on flattened se-
quences (e.g video sample from auto encoders trained on single frames); as well
as a canonical, dimension independent method for generating stochastic interpo-
lations. The distribution of interpolation paths is represented as the distribution of
a bridge process constructed from an artificial random data generating process
in the latent space, having the prior distribution as its invariant distribution. The
suggested method can be used in many latent variable model frameworks. We
concentrate on the Variational Auto Encoder (VAE) model for image reconstruc-
tion.

Model and Interpolation

The VAE model [2] consists of:

• An encoder qφ(z|x), transforming images x to a representation (of lower di-
mension) z, through a neural network function.

• A prior p(z), enforcing a structure on the latent distribution of data

• A decoder, pθ(x|z), transforming a z-representation to an image representa-
tion x.

Most common interpolation method is linear interpolation:

1. Encode x(i), x(j) through sampling z(i) ∼ qφ(z|x(i)), z(j) ∼ qφ(z|x(j))

2. Pick points of suitable distance along the line between decoded data points:
[z(i), z, ..., z(j)]

3. Decode the latent path by sampling

[x(i) ∼ pθ(x|z(i)), x ∼ pθ(x|z), ..., x(j) ∼ pθ(x|z(j))]

Fig. 1: Classical linear interpolation over the Celeb A dataset

Problem and idea

• Good samples are generally produced close to data latent representation.

• Many prior structures, especially in higher dimension, and especially the
commonly used normal prior, enforces latent data representations with
"holes".

• Lines between data points hence often traverse through "empty" areas of the
latent space, creating images of low fidelty.

• Many methods have been developed to remedy this problem, notably spher-
ical interpolation for higher dimensional normal priors.

• We suggest a novel stochastic interpolation scheme, that also address the
above problem. We argue for that stochasticity is preferable and interesting
in its own right for some applications.

Method

Our approach starts from the following observation. Given a probability p of the form p(x) ∝
e−E(x) a Langevin diffusion of the form

dX = −∇E(X)dt +
√
2dW (1)

has p as its stationary distribution (under suitable conditions) In the context of VAE with p(x)
as the prior, the process will reside "close" to latent data representations.
In order to create an interpolation scheme from the stochastic process, we note that the
corresponding bridge process, Xx0xT from x0 to xT is given by [1]

dXx0xT=
(
−∇E(Xx0xT ) + σσT∇ log p(xT , T |Xx0xT , t)

)
dt

+ σdW, (2)

This gives a stochastic interpolation scheme for a completely general prior. However, the
term p is hard to calculate for most priors. This can be solved with numerical methods. For
some priors, notably the normal distribution, p can be solved for explicitly. If the prior p(z) is
an n-dimensional standard normal distribution (e.g the prior in the VAE setting),

p(z) = (2π)−n/2e−2
−1zzT , (3)

it follows that the bridge for the corresponding diffusion process reads

dZ =
[
− Z +

2e−(T−t)

1− e−2(T−t)
(zT − Ze−(T−t))

]
dt

+
√
2dW, (4)

We use this bridge process for interpolation between two latent data representations, when
the VAE prior p is a normal distribution. The approach outlined has the advantage of being
very general. However, for normal priors, Gaussian processes can be deployed as well.
The kernel parameterization of Gaussian processes allows for greater control over the
properties of the bridge. For our examples, we use two kernels

k(h) = exp
{
− β|h|α

}
(5)

k(h) = exp
{
− 2

`2
sin2

(
π
|h|2

p

)}
(6)

Kernel (5) is suitable for strong control over smoothness in image transitions. Kernel (6)
allows for a periodic behavior of the interpolation path. In order to construct an interpolation
path with a Gaussian Processes of kernel k, we consider the joint Gaussian distribution of
(Z(0), Z(t1), . . . , Z(tm), Z(T )), conditioning on (Z(0), Z(T )). Using the properties of con-
ditional Gaussian distributions we obtain the mean µ̂z0,zT (t) and covariance k̂(t, s) for the
bridge process

µ̂z0,zT (t) =
z0[k(t)−k(T−t)k(T )]+zT [k(T−t)−k(t)k(T )]

1− k(T )2
(7)

and similar holds for the bridge covariance.

Relation to linear and spherical interpolation

For normal distributions p of high dimension n, it is well-known that samples are located
around a sphere with radius

√
n [3]. In this setting, linear interpolation with prior p can

create middle images of low fidelity, since lines between points on a sphere passes through
the interior. In order to remedy this phenomenon, spherical interpolation was introduced [4].
Here, interpolation is performed along geodesics on the sphere, thus assuring that the path
stays within the data manifold. However, normal priors of low dimension is concentrated
around the origin, rendering linear interpolation more suitable. Our method has the benefit of
being somewhat a generalisation that encompasses both spherical and linear interpolation
as special cases. For large T and high dimension, the interpolation path stays on the sphere
of radius

√
n (shown in article). For small T , randomness is eliminated, and the interpolation

path is essentially linear. Figure 2 and 3 illustrate this phenomenon for the MNIST data set.

MNIST example

Fig. 2: Spherical interpolation does not pass through data for normal priors of low dimension

Fig. 3: This is also seen in the quality of images for the respective methods

Human poses

Fig. 4: Samples of human pose images

The following samples where generated with a Gaussian process bridge be-
tween two human pose pictures. Here, the latent space is of high dimension,
and so data resides close to the sphere. We apply the periodic kernel, and use
large T , to promote stochasticity and proximity to the sphere. Note that for ev-
ery sample, the start and end point is the same, and that the method hence
produces an interesting and plausible variability.

Fig. 5: Random walks from human poses. Scan with phone to see video
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