
• Accuracy on all of the event-based data sets 

 

 

 

• Comparison with state-of-the-art (Caltech101 dataset) 

 

 

 

 

• Accuracy under varying: number of basis vectors, size 
of LVE and number of accumulation intervals 

Introduction 
• Event-based camera  

– Captures changes in intensity 
– Asynchronous 
– Advantages 

• High temporal resolution,  
• High dynamic range and  
• No motion blur 

• Key question  
– How to extract meaningful and useful information? 

 

• Handcrafted feature approaches 

• Learning based approaches  

– Spiking Neural Networks (SNNs) [21] 

– Standard Neural Networks [5], [11], [4], [3] 

• Applications  

– Gesture recognition [22], Object recognition [27], 
[4],  Face detection [7],  Optical flow prediction [37], 
[34] and Image reconstruction [26] 

Prior Work 

• Local volume of events (LVE) extraction 

Unsupervised Feature Learning Approach 

• Two part recognition pipeline over the LVE 

Part one: unsupervised feature learning 
           -Direct problem formulation 
           -Inverse problem formulation 

Part two: classifier training 

• Data-adaptive, learned single-layer architectures for 
event-based data not studied extensively 

• Unknown  

– To which extend a single-layer model could be useful 
for event-based data and 

– How the spatial and temporal resolution of the 
event-based data impacts performance for a 
recognition task 

Motivation 
Numerical evaluation 
• Data sets: N-MNIST, N-CARS, N-Caltech101 

• Learned unsupervised feature mappings under 

– Direct and Inverse problem formulation 

• Classifier Linear SVM 

• Used quantitative measures 

– Acc. (measured as average of the classifier 
prediction accuracy over the test set) 
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