Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem Formulation

University of Zurich

Introduction

Event-based camera

- Captures changes in intensity
- Asynchronous
- Advantages
 - High temporal resolution,
 - High dynamic range and

No motion blur

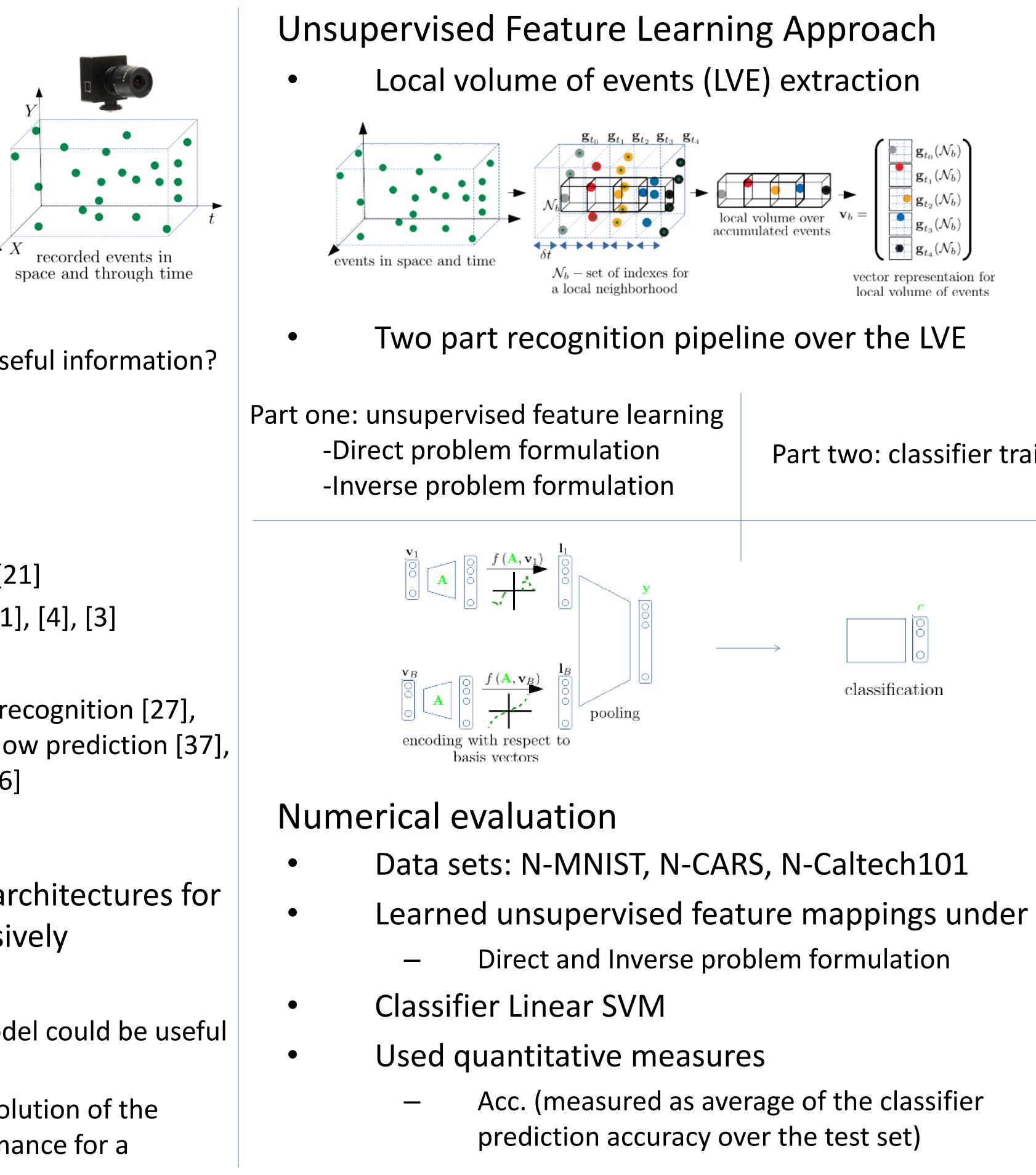
- Key question
 - How to extract meaningful and useful information?

Prior Work

- Handcrafted feature approaches
- Learning based approaches
 - Spiking Neural Networks (SNNs) [21] _
 - Standard Neural Networks [5], [11], [4], [3]
- Applications
 - Gesture recognition [22], Object recognition [27], [4], Face detection [7], Optical flow prediction [37], [34] and Image reconstruction [26]

Motivation

- Data-adaptive, learned single-layer architectures for event-based data not studied extensively
- Unknown
 - To which extend a single-layer model could be useful _____ for event-based data and
 - How the spatial and temporal resolution of the ____ event-based data impacts performance for a recognition task



Robotics and Perception Group, University of Zurich Dimche Kostadinov and Davide Scaramuzza

vector representaion for

Part two: classifier training

Numerical evaluation

Accuracy on all of the event-based data sets

Data set	Acc. % (inverse)	Acc. % (direct)
N-MNIST	98.1	96.8
N-Calteh101	78.4	77.1
N-CARS	84.7	81.3

Method	Acc. %
Hfist [14]	06.0
HOTS ^[2]	21.0
Garbor-SNN [41]	19.2
HATS [4]	64.2
DART[30]	70.3

Accuracy under varying: number of basis vectors, size of LVE and number of accumulation intervals

	Method			Size of the Local Volume								
			$4 \times 4 \times 4$	$4 \times 12 \times 12$	$4 \times 16 \times$	(16 4	$\times 21 \times$	21				
	Proposed (inverse)		69.6	78.4	76.4		75.2					
	Proposed (direct)		64.8	77.1	74.5)	75.1					
Method	Number of Basis Vectors			ectors	Metho	d	Number of Acci			ulation Intervals		
	1000	1500	1700	2000			2	4	7	10		
Proposed (inverse)	73.2	74.5	78.4	76.0	Proposed (inverse)		61.7	72.4	78.4	76.3		
Proposed (direct)	74.3	77.0	77.1	75.5	Proposed (direct)		63.2	69.1	77.1	74.1		

References

[28] Jonathan Binas Matthew Cook Shih-Chii Liu Peter U. Diehl, Daniel Neiland Michael Pfeiffer. Fast-classifying, high accuracy spiking deepnetworks through weight and threshold balancing. In Int. Joint Conf. Neural Networks (IJCNN), 4:933-2940, 2015

[13] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedes-trian detection: An evaluation of the state of the art.IEEE Trans. PaternAnal. Mach. Intell., pages 743–761, 2012. [39] Margarita Chli Stefan Leutenegger and Roland Y. Siegwart. Brisk: Binaryrobust invariant scalable keypoints. In Int. Conf. Comput. Vis. (ICCV), page 2548–2555, Nov. 2011. 2 [24] David G. Lowe. Distinctive image features from scaleinvariant keypoints.page 91–110, 2004.

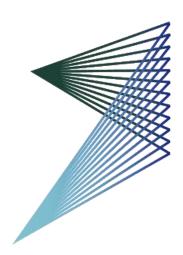
[38] Josef Sivic and Andrew Zisserman. Efficient visual search of videos castas text retrieval. IEEE Trans. Pattern Anal. Mach. Intell., page 591–606, Apr. 2009. [43] Paul Viola and Michael J. Jones. Robust real-time face detection.Int. J.Comput. Vis., page 57(2):137–154, May 2004. [22] Paul K. J. Park Michael Pfeiffer Chang-Woo Shin-Hyunsurk Ryu Jun-haeng Lee, Tobi Delbruck and Byung Chang Kang. Live demonstration: Gesture-based remote control using stereo pair of dynamic vision sensors. In IEEE Int. Symp. Circuits Syst. (ISCAS), 2012

[27] Jun Haeng Lee Byungkon Kang-Chang-Woo Shin Jooyeon Woo Jun-SeokKim Yunjae Suh Sungho Kim Saber Moradi Ogan Gurel Paul K. J. Park, Kyoobin Lee and Hyunsurk Ryu. Computationally efficient, real-timemotion recognition based on bio-inspired visual and cognitive processing. In IEEE International Conference on Image Processing (ICIP). IEEE, Sept. 2015. [4] Nicolas Bourdis Xavier Lagorce Amos Sironi, Manuele Brambilla andRyad Benosman. Hats: Histograms of averaged time surfaces for robust event-based object classification. In IEEE Conf. Comput. Vis. PatternRecog (CVPR), page 1731–1740, 2018.

[7] Souptik Barua, Yoshitaka Miyatani, and Ashok Veeraraghavan. Direct face detection and video reconstruction from event cameras. In IEEE Winter Conf. Appl. Comput. Vis. (WACV), pages 1–9, 2016. [34] Ryad Benosman Sio-Hoi leng Paul Rogister and Christoph Posch. Asynchronous event-based hebbian epipolar geometry. IEEE Trans. Neural Netw., page 22(11):1723–1734, 2011 [26] Andrew J. Davison Patrick Bardow and Stefan Leutenegger. Simultaneousoptical flow and intensity estimation from an event camera. In IEEEConf. Comput. Vis. Pattern Recog. (CVPR), page 884–892, 2016. [21] Tobi Delbruck Jun Haeng Lee and Michael Pfeiffer. Training deepspiking neural networks using backpropagation. Front. Neurosci., page10:508, 2016 [15] Ralph Etienne-Cummings Christoph Posch Nitish Thakor Garrick Or-chard, Cedric Meyer and Ryad Benosman. Hfirst: A temporal approachto object recognition. IEEE Trans. Pattern Anal. Mach. Intell., page2028–2040, 2015.

[20] Carmen Serrano Bego Na Acha Teresa Serrano-GotarredonaShouchun Chen Jose A. Perez-Carrasco, Bo Zhao and BernabeLinares-Barranco. Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate coding and coincidenceprocessing–application to feedforward convnets.IEEE Trans. PatternAnal. Mach. Intell., page 2706–2719, Nov. 2013 [6]David Berg Timothy Melano Jeffrey McKinstry Carmelo Di Nolfo-Tapan Nayak Alexander Andreopoulos-Guillaume Garreau Marcela MendozaJeff Kusnitz Michael Debole Steve Esser Tobi Delbruck Myron FlicknerArnon Amir, Brian Taba and Dharmendra Modha. A low power, fully event-based gesture recognition system. In IEEE Conf. Comput. Vis.Pattern Recog. (CVPR), page 7388–7397, 2017. [37] Charles Clercq Chiara Bartolozzi Ryad Benosman, Sio-Hoi leng and Mandyam Srinivasan. Asynchronous frameless event-based optical flow. Neural Netw., page 27:32–37, 2012 [5] Guillermo Gallego Narciso Garcia Ana I. Magueda, Antonio Loguercio and Davide Scaramuzza. Event-based vision meets deep learning on steering prediction for self-driving cars. In IEEE Conf. Comput. Vis. Pattern Recog.

(CVPR), page 5419–5427, 2018. [11] Michael Pfeiffer Daniel Neil and Shih-Chii Liu. Phased lstm: Acceleratingrecurrent network training for long or event-based sequences. In Conf. Neural Inf. Process. Syst. (NIPS), page 3882–3890, 2016. [3] Kenneth Chaney Alex Zihao Zhu, Liangzhe Yuan and Kostas Daniilidis Ev-flownet: Self-supervised optical flow estimation for event-based cameras. In Robotics: Science and Systems (RSS), 2018.



ROBOTICS &

PERCEPTION

GROUP

Comparison with state-of-the-art (Caltech101 dataset)

