PRF-Ped: Multi-scale Pedestrian Detector
with Prior-based Receptive Field
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Introduction Proposed Method

Focusing on multi-scale pedestrian feature extraction
and aggregation.
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The proposed detector can obtain better pedestrian

feature representation with a wider range of scales Prior-based Receptive Field Block (pRFB)

for prediction, while less affected by the surrounding

complex background. i o i
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Experimental Results

The pedestrian detection results evaluated

Th rian ion resul I ith MR~2 on the CityPerson i _
e pedestrian detection results evaluated wit on the CityPersons dataset with MR~2 on the Caltech dataset

Methods Backbone Reasonable Bare Partial Heavy Large Medium Small Test Time
FRCNN [1] VGG-16 15.4 - - - 7.9 7.2 25.6 - = = =9.5% MS-CNN
FRCNN+Seg [1] VGG-16 14.8 - - - 8.0 6.7 22.6 - 9.2% CompACT-Deep
OR-CNN [2] VGG-16 12.8 6.7 15.3 55.7 - - - - = = =8.1% FasterRCNN+ATT
RepLoss [3] Resnet-50 13.2 7.6 16.8 56.9 - - - - 7.5% SA-FastRCNN
TLL [4] Resnet-50 15.5 10.0 17.2 53.6 - - - - = = =7.3% RPN+BF
TLL+MREF [4] Resnet-50 14.4 9.2 159 52.0 - - - - 30 - = = =6.4% SDS-RCNN
ALFNet [3] Resnet-30 12.0 8.4 11.4 51.9 6.6 5.7 19.0 0.27s / image ‘ M 6-3:/0 fDFLF AN
MGAN [6] VGG-16 15 - - 51.7 - - - - 2 0l o _i;; C‘éﬁg’t asterRC
CSP [7] Resnet-50 11.0 7.3 104 49.3 6.5 3.7 16.0 0.33s / image o 4'20/: PRE-Ped(ours)
PRF-Ped (Ours) Resnet-50 9.7 6.5 8.8 47.3 58 3.9 12.9 0.16s / image é -
The ablation study of PRF-Ped on the CityPersons dataset 10+
Method Concatenate ASFF BFEM-concat ~ BFEM-add BFEM PRFB MR™%(%)  #Parameters Test Time
CSP v 11.0 40.0MB 0.33s / image
v 10.7 28.1MB 0.11s / image 05 | \
v v 10.7 35.1MB 0.14s / image 2
Ours v v 10.4 31.6MB 0.13s / image s
v v 10.1 33.4MB 0.14s / image 102 100
Ve va v 9.7 34.6MB 0.16s / image false positives per image
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