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Introduction
In the last decades, many companies have taken ad-
vantage of knowledge discovery to identify valuable
information in massive volumes of data generated at
high frequency. Machine learning techniques can be
employed for knowledge discovery since they can ex-
tract patterns from data and induce models to pre-
dict future events. However, dynamic and evolving
environments usually generate non-stationary data
streams. Hence, models trained in these scenarios
may perish over time due to seasonality or concept
drift. Periodic retraining can help, but a fixed hy-
pothesis space may no longer be appropriate. An
alternative solution is to use meta-learning for reg-
ular algorithm selection in time-changing environ-
ments, choosing the bias that best suits the current
data. In this work, we present an enhanced frame-
work for data stream algorithm selection based on
MetaStream.
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Figure 1:Online phase of MetaStream.

Our approach uses meta-learning and incremental
learning to actively select the best algorithm for
the current concept in a time-changing environment.
Different from previous work, we use a rich set of
state-of-the-art meta-features, and an incremental
learning approach in the meta-level based on Light-
GBM. The results show that this new strategy can
improve the recommendation accuracy of the best
algorithm in time-changing data.

Methods
The MetaStream framework based on Rossi et al.
(2014) [1], performes a continuous selection of algo-
rithms for the current stream of data. Initially, in
the offline stage, it performs hyperparameter tun-
ing, validation and training data generation with a
small initial sample of data. Then, the online phase
acts in the dynamic environment recommending an
algorithm for a given window of the data.
The offline phase starts after a given initial amount
of training data has arrived. With this batch of data,
Metastream induces the base-algorithms through k-
fold cross-validation for hyperparameter tunning.
With the same initial data, the algorithm contin-
ues by swiping a sliding window through the data,
as shown in Figure 2. In this setting, Metastream
induces base models using the base-level algorithms
and extracts meta-features xm for each window ωbi.
The best performing model becomes the label of
meta-example (ym).
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Figure 2:Meta-feature extraction from ωb and label obtaining
from ηb windows.

In the online phase, the algorithm receives a con-
tinuous stream of data. At first, it gets a feature
vector xb = (x1, ..., xp), and with some delay, the
target attribute yb ∈ {1, 2, .., k} for classification,
where k is the number of classes.
It has a window of fixed size ωb that is used to in-
duce the model and a window of fixed size ηb where
the model induced on ωb is evaluated. When Metas-
tream processes all examples in ηb, it shifts the ωb
and ηb windows ηb instances to the right. After-
wards, Metastream induces a new model for this
window.

Results
Figures 3 and 4 show the cumulative gain score for
MetaStream, which is the difference between the rec-
ommended algorithm accuracy and the algorithm
that performed better in the offline dataset (Default
method) accuracy. The filled area is the cumula-
tive sum of those score differences over time while
the colours orange and blue represent incremental
and non-incremental algorithms, respectively. Each
black dot represents the score gain for time t.
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Figure 3:Cumulative score gain over time for Electricity.

In these figures, we observe a positive gain for
the Electricity and PowerSupply datasets consider-
ing the recommendations of both strategies. How-
ever, the incremental strategy presents better per-
formance for Electricity as opposed to PowerSupply,
where the non-incremental is slightly better.
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Figure 4:Cumulative score gain over time for PowerSupply.

Conclusion
We enhance MetaStream by extending the meta-
features to modern and more informative ones, by
including the incremental learning in the MtL level
and by proposing LightGBM as meta-classifier. Al-
though both strategies performed similarly, the in-
cremental one had a significant lesser consumption of
memory and processing time. The experimental re-
sults showed that the meta-classifier can consistently
recommend the best algorithm for a given window
in the data stream, leading to an increased gain of
performance over time.
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