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Introduction

• The ability to forecast trajectories is essential to ensure safety in autonomous driving

• Unfortunately, the autonomous driving datasets required to train prediction models are extremely expensive
to gather effectively

• We propose a data driven approach based on Markov Chains to generate synthetic trajectories, which are
useful for training a multiple future trajectory predictor.

• We define a trajectory prediction model and we show that combining synthetic and real data we obtain
prediction improvements, obtaining state of the art results.

Trajectory Generation

• Markov Chain whose param-
eters are estimated from real
data

• Chain states correspond to
vehicle position offsets from
one timestep to the next
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Figure 1: Clusterized offsets from
the KITTI dataset in polar coordi-
nates (ρ,Θ) .

Model

We developed a model specifically tailored to exploit syn-
thetic samples with multimodal ground truth futures. The
architecture is based on an encoder-decoder structure, which
takes as input past trajectories and outputs multiple futures.
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Figure 2: Architecture overview. Past trajectory and context map are encoded
separately and used as input and initial state of the controller. The controller
loops K times and at each iteration performs an attention with the map encoding
via dot product. The resulting vector is fed to the decoder which emits a
prediction. A diverse future is obtained for each iteration of the controller

Using synthetic data, along with
a model specifically tailored for
multimodal predictions, has led to
state of the art results on the
KITTI dataset.

Figure 3: Predictions on real data.
Green: GT, blue: predictions.

Results

We trained three different variants of our method, varying the source
of data: only real trajectories from KITTI, only synthetically generated
trajectories, both real and synthetic trajectories. All variants are tested
on the test set of KITTI, i.e. on real data.

Method ADE@4s FDE@4s
Kalman 3.03 7.41
Linear 1.64 4.73
MANTRA 0.94 2.48
Ours (Synthetic data) 1.31 3.44
Ours (Real data) 1.24 2.95
Ours (Mixed data) 0.89 2.27

Table 1: Average Displacement Error (ADE) and Final Displacement Error
(FDE) in meters, computed for predictions at 4 seconds.


