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State-of-the-art approaches for Ha.ndwri.tten Text. Recognition. (HIR) in| | DefConvs kernel deforms to focus on the writing instead of the background.
free-layout pages usually encode input images with Convolutional Neu-| |Indeed, the kernel’s grids sampling in uniform regions are less deformed

ral Networks, whose kernels are typically defined on a fixed grid than those sampling on the edges of the writing parts.
and focus on all input pixels independently. =~ However, handwritten

texts are a sparse structure, in which only a small part of the input
(i.e. the ink pixels) is useful for recognition. Moreover, handwritten
characters and words vary in shape, scale, and orientation but, with
standard convolutions, this variability is not effectively taken into ac-
count unless ad hoc data augmentation or preprocessing is performed. ’ : Ny e -

2%

Cumulative offsets magnitude

2 3 - 5 B

e e Compared to an HTR network using standard convolutions, the receptive
fields of our Full-DetfConv model are non-connected areas of irregular shape
that better adapt to handwritten strokes and cover a wider portion of the
image thanks to the limited amount of additional offsets parameters.
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— We propose to apply deformable convolutions (DefConvs) [2] in place of
standard convolutions for the HTR task.

Full-DefConv HTR Model

We adapt the sequence recognition network proposed in [5], commonly used
as a base for HTR schemes, and replace all its standard convolution layers
with DefConv layers. The model consists of three main parts: a CNN to ex-
tract sequences of features from the input image, an RNN to produce labels’
probabilities based on the sequence, and a decoding block to output the final
transcription. The network is trained to maximize the Connectionist Tempo-
ral Classifier (CTC) probability of the transcribed sequence.
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