

NephCNN A Deep-Learning Framework for Vessel Segmentation in Nephrectomy Laparoscopic Videos

Alessandro Casella^{1,2}, Sara Moccia^{1,3}, Chiara Carlini², Emanuele Frontoni³, Elena De Momi², Leonardo S. Mattos¹

¹ Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
² Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
³ Department of Information, Engineering, Università Politecnica delle Marche, Ancona, Italy

BACKGROUND

Renal Cell Carcinoma (RCC) is one of the most common kidney cancer in adults (3% of adult cancers in Europe) [1].

Current therapeutic option consist in **nephrectomy**, the complete or partial removal of kidney tissue (95% 5-year survival rate) [2].

Robot-Assisted Partial Nephrectomy (RAPN) provide advantages over laparoscopic surgery in terms of health outcomes, safety, and costs [3]. **Detecting critical structures**, such as the **renal artery**, can increase surgery Low visibility could lead to accidents during surgery (e.g., unwanted vessel resection and bleeding due to surgical tools misplacement) [5]. Surgeons' vision is hampered by:

- Small field of view
- Occlusion by surgical tools
- Reduced Manoeuvrability

This paper propose an automatic and fast renal artery segmentation from

AIM

safety [4].

intra-operative RAPN videos.

METHODS

- Dataset: Nephrec9 [6] dataset of RAPN videos acquired at European Institute of Oncology (IEO), Milan, Italy.
- Dataset annotation performed with expert clinicians' support.
- We proposed an adversarial segmentation framework inspired by Casella et al. [7] along with a novel weighted L1 adversarial loss function and 3D convolution for

temporal information processing [8].

Finally, we compared accuracy, in terms of Dice Similarity Coefficient (*DSC*) with state-of-the-art networks

RESULTS

CONCLUSIONS AND FUTURE DEVELOPMENTS

- In this study, our proposed framework achieved a median DSC = 71.76%
- This work is among the first attempts that combines adversarial training and spatio-temporal features for segmentation in robot-assisted renal surgery.
- Further improvements will deal with
 - Extensive validation with broader dataset
 - Consider advanced data augmentation techniques
 - Exploitation of extension to this framework

[1] S. MacLennan et al. (2012) Systematic review of oncological outcomes following surgical management of localised renal cancer, European Urology, 61(5) 972–993 [2] J. E. Abel et al. (2010) Identifying the risk of disease progression after surgery for localized renal cell carcinoma, BJU International, 106(9) 1227–1283 [3] G. Novara et al. (2016) Robot-assisted partial nephrectomy, International Journal of Surgery [4] S. Moccia et al. (2018) Toward improving safety in neurosurgery with an active handheld instrument, Annals of Biomedical Engineering, 46(10) 1450–1464 [5] L. Maier-Hein et al. (2017) Surgical data science for next-generation interventions, Nature Biomedical Engineering, 1(9), 691–696 [6] H. Nakawala et al. (2017) Nephrec9 (version 0.1), Zenodo [7] A. Casella et al. (2020) Inter-foetus membrane segmentation for TTTS using adversarial networks, Annals of Biomedical Engineering, 48(2), 848-859 [8] E. Colleoni et al. (2019) Deep learning based robotic tool detection and articulation estimation with spatio-temporal layers, IEEE Robotics and Automation Letters, 4(3) 2714-2721

ICPR 2020 – 25th International Conference on Pattern Recognition *Milan, Italy, January 10–15, 2021*