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Stochastic block models (SBMs) are often used to find
assortative community structures in networks, such that the
probability of connections within communities is higher than in
between communities. However, classic SBMs are not limited to
assortative structures. In this study, we discuss the implications
of this model-inherent indifference towards assortativity or
disassortativity, and show that this characteristic can lead to
undesirable outcomes for networks which are presupposedy
assortative but which contain a reduced amount of information.
To circumvent this issue, we introduce a constrained SBM that
imposes strong assortativity constraints, along with efficient
algorithmic approaches to solve it. These constraints
significantly boost community recovery capabilities in regimes
that are close to the information-theoretic threshold. They also
permit to identify structurally-different communities in networks
representing cerebral-cortex activity regions.

Abstract

STOCHASTIC BLOCK MODELS. Fitting the parameters of a
stochastic block model (SBM) to a given graph is a prominent
way of searching for communities. The degree-corrected SBM
(DC-SBM), in particular, allows non-uniform node degree
distributions, making block modeling more representative of
real-world networks:

Background

ASSORTATIVITY CONSTRAINTS. Following [Amini and
Levina, 2018], two main notions of assortativity can be
distinguished for block models:

Strong assortativity. All diagonal terms of the SBM matrix are
greater or equal than all off-diagonal terms:

in which ki is the degree of node i, variables Z represent the
binary community assignments, and Ω is a symmetric K x K
edge probability matrix.
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Weak  assortativity. Each diagonal term of the SBM matrix is
greater or equal than the other terms in its row:

In this study, we will use the strongest definition of assortativity
based on the first condition above. With these constraints, the
log-likelihood maximization model becomes:

where λ represents a continuous variable acting as a threshold.

We introduce an iterative algorithm to solve the presented
model above. This algorithm starts with a random initial solution
and proceeds by iteratively evaluating each possible relocation
of a node to a different community. Each such relocation is only
applied if its application combined with an optimal update of the
SBM matrix results into an improvement of the likelihood. As
such, the evaluation of each relocation may require the solution
of a small constrained convex optimization subproblem with K2
variables and constraints to find an optimal SBM matrix for the
new partition. Thus, the algorithm combines two techniques:

Methodology

where mrs represents the number of edges between
communities r and s according to the fixed partition and

SBM-based community detection approaches, however, are
agnostic to the assortativity of their solutions. They can
indifferently model assortative and disassortative structures.

This modeling capability can be viewed as an asset but also as
a weakness. In the most dramatic situations, non-assortative
solutions might go under the radar and lead to mistakes of
interpretation. In other cases, non-assortative solutions with a
better likelihood may substitute the assortative solutions which
were originally sought. This later situation is especially prevalent
in case studies involving sparse graphs, or with lightly
assortative structures which challenge detection algorithms.

CONTRIBUTIONS. In this work, we propose a variant of the
DC-SBM which includes user knowledge about assortativity. We
incorporate this information by setting assortativity constraints
on the DC-SBM parameter set. The key contributions of this
work are the following:

1. We introduce a DC-SBM variant which incorporates
assortativity constraints to represent prior user knowledge;

2. We propose an efficient solution approach based on local
optimization and interior-point algorithms for this model;

3. Through extensive computational experiments, we discuss
the practical implications of this constrained model and
identify the regimes in which it contributes to improve
community detection practice.

an incremental move evaluation approach, using the
log-likelihood of the unconstrained problem to filter
relocation candidates, and possibly keeping this solution
if it naturally satisfies the assortativity constraints;
an efficient interior point solver for the following
convex constrained subproblem, only used if the
relocation candidate was not filtered out due to the
previous conditions:

Figure 1: The three best solutions in a small example case

(a) Opt. solution
log L = -2.7616

(b) 2nd best solution
log L = -5.3193

(c) 3rd best solution
log L = -5.9012
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SYNTHETIC NETWORKS. To compare the results of the DC-
SBM and AC-DC-SBM, we generate 50 synthetic data sets with
N = 100 nodes and K = 4 blocks. For each data set, the SBM
parameters are uniformly sampled in the following intervals:

Experimental Results

BRAIN CORTEX NETWORKS. We analyze in this section the
case of the "cats cortex network", which is known to have an
assortative structure and is divided into four main functional
areas: visual, auditory, frontolimbic, and somatosensory-motor
duties. The network is obtained from a connectivity pattern
based on 1139 cortico-cortical connections and 65 cortical
areas. As in most community detection tasks, the ground truth
in this network is not available. In fact, there is no unique
"correct" partitioning, but different algorithms can allow to
highlight different underlying structures. Figure 4 reports the
communities found with the standard DC-SBM, the AC-DC-SBM
and modularity maximization models on this dataset.

Figure 2 compares the NMI obtained with the standard DC-SBM
and the proposed AC-DC-SBM on these networks. For each
network and model, we conduct 50 independent runs from
different initial solutions. AC-DC-SBM obtains on 49 out of 50
datasets a better or equal median NMI than DC-SBM. DC-SBM
appears to be very sensible to low-quality local minima, and this
behavior is particularly visible on the first six data sets
presented in the figure. A pairwise Wilcoxon test comparing the
average NMI of both methods over the 50 data sets confirms
the statistical significance of this difference of performance (with
p = 3.9 x 10-10).

Figure 3 compares the number of assortative communities
found by AC-DC-SBM and DC-SBM. The standard DC-SBM
produces much fewer assortative communities in average (2.43
compared to 3.76). With the AC-DC-SBM, non-assortative
partitions are heavily penalized from a likelihood perspective
and therefore generally avoided.

The best solution obtained with the standard DC-SBM is visibly
non-assortative. The minimum value found along the diagonal
of the SBM matrix is 1.5060, whereas the maximum value in the
off-diagonal is 1.9050. In contrast, the partition produced by the
AC-DC-SBM satisfies the strong assortativity conditions. The
minimum value of the diagonal of the SBM matrix is 2.0196, and
the maximum value in the off-diagonal is 1.7152. Finally, the
modularity-maximization approach leads to the most assortative
partitioning of this network. Yet, since the model does not take K
into consideration, this partitioning contains only three groups,
contrasting with the four functional areas which were originally
expected.

Figure 3: Distribution of the number of assortative
communities found by AC-DC-SBM and DC-SBM.

Figure 2: Performance of DC-SBM and AC-DC-SBM on synthetic SBM networks. The results are ordered by median NMI.

Figure 4: The best among 100 network partitions found by different models in the cats cortex network.

(a) Standard DC-SBM (b) AC-DC-SBM (c) Modularity maximization model
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