Class-incremental Learning with Regular Polytope Networks

Federico Pernici, Matteo Bruni, Francesco Turchini, Claudio Baecchi and Alberto Del Bimbo {name.surname@unifi.it}

Motivation

We are interested in **learning features** that keep **stationary** while **learning** novel classes **incrementally**.

Practical advantages:

- Features can be used interchangeably in time,
- Visual search systems avoid re-computing features in the gallery when updating the model

Along a similar vein, [Yantao et al. CVPR2020] introduces feature backcompatibility

Incremental Learning of a New Class (2D internal feature representation on MNIST dataset)

• A **new class** (brown) is incorporated into the model

• The **angle** between feature classes **changes** (i.e., $\varphi \neq \varphi'$) • The feature embedding changes

Class-Incremental Learning and Feature Representation

Class incremental Learning: training a single model on a sequence of disjoint classification problems without forgetting how to solve the previous ones.

Even assuming no catastrophic forgetting, internal **feature** representation **changes** as **new classes** are incorporated into the learning model.

We propose a pre-allocated **fixed** classifier (i.e., not undergoing learning). This keeps the **features** in a **constant specific spatial configuration** as novel classes are

incorporated into the learning model.

How to fix the Classifier?

Classifier values are taken from the coordinate vertices of **Regular Polytopes**. [Pernici et al. arXiv 2019]

- High dimensional Platonic Solids
- In 2D, regular n-sided polygon

Fixed and learnable classifiers have shown to achieve the **same** classification **accuracy** [Hoffer et al. ICLR2018]

Class Pre-allocation

Pre-allocation of the output nodes of future unseen classes allows to see **negative samples** since the **beginning** of learning.

• The space of unseen classes is not occupied by the seen ones

As **no prior** assumption about the **semantic similarity** between future classes can be made, the natural assumption is to consider the *d*-Simplex fixed classifier • all classes are nearest to all others (i.e., same cosine distance φ).

MNIST (LeNet++ architecture, 2D feature dimension)

novel learned class significantly and unpredictably changes the geometric configuration of already learned features

SPLIT-CIFAR100 (avg accuracy as new tasks are incrementally learned)

Method	$ \mathcal{M} $	Spli'
EWC	-	17
Online-EWC	-	17
SI	-	14
MAS	-	16
GEM	1400	22
GEM	5600	
Expanding Classifer	1400	33
Expanding Classifer	5600	51
Pre-allocated RPC (Ours)	1400	33
Pre-allocated RPC (Ours)	5600	51

[Yantao et al. CVPR2020] Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto - Towards Backward-Compatible Representation Learning CVPR 2020

[Pernici et al. arXiv 2019] Federico Pernici, Matteo Bruni, Claudio Baecchi, Alberto Del Bimbo Fix Your Features: Stationary and Maximally Discriminative Embeddings using Regular Polytope (Fixed Classifier) Networks, arXiv https://arxiv.org/abs/1902.10441

[Hoffer et al. ICLR2018] Elad Hoffer, Itay Hubara, Daniel Soudry - Fix your classifier: the marginal value of training the last weight layer - ICLR 2018

MICC, University of Florence, Italy

Experiments

References