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Motivation

We are interested in learning features

that keep stationary while learning

novel classes incrementally.

Practical advantages:

• Features can be used interchangeably in time,

• Visual search systems avoid re-computing 

features in the gallery when updating the 

model

Along a similar vein, [Yantao et al. 

CVPR2020] introduces feature back-

compatibility

Incremental Learning of a New Class

• A new class (brown) is incorporated into the model

• The angle between feature classes changes (i.e., 𝜑 ≠ 𝜑′)
• The feature embedding changes

(2D internal feature representation on MNIST dataset) 

Pre-allocation of the output nodes of future 

unseen classes allows to see negative 

samples since the beginning of learning. 

• The space of unseen classes is 

not occupied by the seen ones

As no prior assumption about the semantic similarity

between future classes can be made, the natural 

assumption is to consider the d-Simplex fixed classifier

• all classes are nearest to all others 

(i.e., same cosine distance 𝜑).

Class Pre-allocation

Experiments

MNIST (LeNet++ architecture, 2D feature dimension)

SPLIT-CIFAR100 (avg accuracy as new tasks are incrementally learned)
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Class-Incremental Learning and Feature Representation

Class incremental Learning: training a single 

model on a sequence of disjoint classification 

problems without forgetting how to solve the 

previous ones.

Even assuming no catastrophic forgetting, 
internal feature representation changes as new 
classes are incorporated into the learning 
model.

We propose a pre-allocated fixed classifier (i.e., 
not undergoing learning).

This keeps the features in a constant specific 
spatial configuration as novel classes are 
incorporated into the learning model.

How to fix the Classifier?

Fixed and learnable classifiers have shown 
to achieve the same classification accuracy
[Hoffer et al. ICLR2018]

Classifier values are taken from the coordinate 

vertices of Regular Polytopes. [Pernici et al. 

arXiv 2019]

• High dimensional Platonic Solids

• In 2D, regular n-sided polygon

𝜑 𝜑′

novel learned class significantly and unpredictably changes the geometric configuration of already learned features


