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Abstract

The problem of uncovering different dynamical regimes is of pivotal importance in
time series analysis. Switching dynamical systems provide a solution for modeling
physical phenomena whose time series data exhibit different dynamical modes. In this
work we propose a novel variational RNN model for switching dynamics allowing for
both non-Markovian and non-linear dynamical behavior between and within dynamic
modes. Attention mechanisms are provided to inform the switching distribution. We
evaluate our model on synthetic and empirical datasets of diverse nature and
successfully uncover different dynamical regimes and predict the switching dynamics.

Motivation

Switching linear dynamical system models aim to capture complex
(non-linear) time series behaviour via a collection of so-called dynamical
modes, each of which is approximated by a linear model[1, 2]. In short, one
assumes that at each time step t there is a corresponding categorical latent
state zt taking one of K different values and following the Markovian
transitions

zt+1 | zt ∼ πzt, (1)

where πzt ∈ [0, 1]K gives the usual Markov transition probabilities. The
classical approach [1, 2] also introduces the continuous latent states ht ∈ Rp

— these follow affine dynamics, with the different modes being indexed by zt,

ht+1 = Azt+1
ht + bzt+1

+ vt, vt ∼ N (0,Qzt+1
), (2)

where Ak,Qk are matrices of the form Rp×p whereas bk ∈ Rp and
k ∈ (1, ..., K ). At last, the observed data points xt ∈ Rd are obtained via

xt = Cztht + dzt + wt, wt ∼ N (0, Szt+1
), (3)

with Ck ∈ Rd×p, Sk ∈ Rd×d and the drift terms dk ∈ Rd .

Neural Variational Switching Dynamical Systems

Generative Model
I Switching Dynamics (LSTM) hst = fθs

(
xt, hst−1

)
I Switching Probabilitites πkt = softmax

[
gθk
(

hst−1

)]
I Switching Prior p(zt) =

K∏
k=1

(
πkt
)zkt

I Emission Parameters
[
µk

t ,σ
k
t

]
= gϕk

(
hkt−1

)
I Emission Probabilitites p(xkt | xk<t) = N (µk

t , diag
[
(σk

t )2
]
)

I Modes Dynamics hkt = fϕk

(
xt, hkt−1

)
Joint Distribution

p(z≤T , x≤T) =
K∏
k=1

T∏
t=1

(
πkt p

(
xkt
∣∣xk<t))zkt .

MLP

Attention

MLP

Architecture of the NVSDS model. xt the data is fed into the recurrent network modeling the
modes dynamics and switching dynamics (upper part). The representations h obtained by the
experts’ dynamics are fed into an MLPs parametrizing a Gaussian distribution for the outputs x̂t.

Inference
I Approximate Posterior q(zt|x≤t) =

∏M
k=1

(
ρkt
)zkt

I Attention Representation uk = σ (Wk Ht + Vk hst + bk)
I Prediction and Hidden States Ht =

(
[x̂1

t , h1
t ], [x̂2

t , h2
t ], . . . , [x̂Kt , hKt ]

)
I Modes POsterior Probabilities ρtk = softmax [uk · ck]

ELBO

L[q] = EpD(x)

 K∑
k=1

T∑
t=1

{
ρkt log p(xkt |xk<t) + ρkt log

[
πkt
ρkt

]} , (4)

Mode Regularization

We enforce dynamical diversity by imposing cost functions to be trained
along side the maximization of the lower bound

H[ρ] = −EpD(x)

K∑
k=1

ρ̃k log ρ̃k, (5)

where ρ̃k is the time-average posterior class probabilities. We maximize then
L′[q] = L[q] + λeH[ρ], where λe is a hyperparameter.

Experiments

Lorenz Attractor It is defined by a coupled system of non-linear equations
dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y ,

dz

dt
= xy − βz .

(6)
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It is defined as:

f (t) = H(cos(ωst) < 0) cos(ω1t) + [1− H(cos(ωst) < 0)] cos(ω2t) (7)

Where H is the Heaviside function and ωs < ω2 < ω1

We asses these observations quantitatively by defining a binary target vector ρ̂ indicating the
dynamical mode which is present at a particular time-step. Evaluating the mean squared
error between the predicted ρ and ρ̂ yields a dissection error, which we average over multiple
trials (different initial conditions). The NVSDS (0.09) and the NVSDS-EM (0.1) clearly
outperform R-k-Means (0.26), rSLDS (0.4) and MoE (0.47).

Handwrittig

Dissection of a handwriting signal for the NVSDS model for different sequences. The lower row
shows particular letters from the complete sequences for easier comparison.

Conclusion

I In the present work we have provided a neural network solution to the
problem of switching dynamical systems (SDS).

I We build upon variational approximate inference for the categorical variables
indexing of the dynamical modes.

I We incorporate an attention mechanism for the switching procedure.
I We incorporate an entropy regularizer to improve the detection of the modes.
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