Motion and Region Aware Adversarial Learning for Fall Detection with Thermal Imaging

Vineet Mehta*, Abhinav Dhall*†, Sujata Pal*, Shehroz S. Khan⁺ *Dept. of CSE, Indian Institute of Technology Ropar †Human-Centred Artificial Intelligence, Monash University +KITE, Toronto Rehabilitation Institute, University Health Network, Canada https://github.com/ivineetm007/Fall-detection

ROI-3DCAE output

ROI-3DCAE masked output

- Person Tracking- R-FCN based detector, Contour Box Localization and Kalman Filtering.
- Frame masking by their region of interest (ROI) and region based losses.

Motion based Reconstruction

Region based Reconstruction

- Difference constraint- Difference of consecutive frames and their reconstruction.
- Optical Flow- Dense optical computation and spatio-temporal network for flow reconstruction.

Fusion

- Two spatio-temporal autoencoders for reconstruction of thermal and optical flow sequences.
- Single Discriminator consists of two 3D CNN joined by a single sigmoid neuron.

3DCAE-3DCNN (S. S. Khan et al.) 0.95 Fusion-Diff-ROI-3DCAE (Ours) Comparison with the previous methods based on AUC of ROC and PR curve using Mean (C_{μ}) and Std. (C_{σ}) of frame reconstruction errors. **Conclusion and Future works** --- RE std • Region based learning for background agnostic --- RE mean models. Eall event Empty room

Conv-LSTM AE (J. Nogas et al.) DSTCAE-C3D (J. Nogas et al.)

0.0175

~

All frames		Tracked frames			
ROC		ROC		PR	
Cμ	C _σ	C _μ	C _σ	C _μ	C _σ
0.76	0.83	0.63	0.73	0.26	0.37
0.93	0.97	0.85	0.90	0.46	0.53
0.95	0.95	0.90	0.88	0.47	0.48
		0.90	0.93	0.57	0.57

- Motion constraints for discriminative spatio temporal learning.
- In future work, we will use Depth or IP cameras and its fusion with thermal imaging.

References

- Nogas et al., Fall detection from thermal camera using convolutional lstm autoencoder, IJCAI Workshop. 2018.
- Nogas et al., Deepfall: Non-invasive fall detection with deep spatio-temporal convolutional autoencoders, Journal of Healthcare Informatics Research 2020
- Khan et al., Spatio-temporal adversarial learning for detecting unseen falls, Pattern Analysis and Applications, 2020