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Abstract
• We proposed an SNN model with temporal 

coding to directly process LiDAR pulses for 
object recognition. 

• We created a comprehensive temporal pulses 
dataset, “Sim LiDAR”, which simulated LiDAR 
reflection of different road conditions and target 
objects in diverse noise environments. 

• Demonstrates novel contribution in time and 
computational efficiency for real-time deep 
learning applications.

Methods
Neuronal model: 
non-leaky integrate and fire (n-LIF) neuron [1]

Temporal coding:

Motivation & Rationale 
Why SNN: [See Figure 1]

A. Spikes have inherent temporal information.
B. Integrate and fire, more biological plausible.
C. Event driven, asynchronism, energy efficient.

Why raw temporal pulses (rather than point clouds): 
A. Eliminates the restrictions of frames.
B. Can achieve better time efficiency with less 

computational overhead.
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Conclusion
• The proposed SNN has remarkable accuracy
• Extraordinary time and energy efficiency
• Great potential in resource- and/or time-

constrained applications.
• Calls for the combination with neuromorphic 

hardware.

Figure 1. Conventional Neuron vs. Spiking Neuron
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Sim LiDAR (32 categories)

Dynamic vision sensor (DVS) dataset (36 categories)
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Figure 4. Truncation of KITTI with examples

Model Method Accuracy
[2] HFirst Temporal 84.9%
[3] CNN Spike-based 91.6%
[3] CNN Frame-based 95.2%
Our model Spiking MLP 99.5%
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Figure 6. Efficiency of proposed model 

Network structure: Spiking CNN

Figure 5. DVS barrel dataset [2]
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Figure 2. Flow diagram (top) and spiking CNN network (bottom) 
for object recognition

DVS Dataset (compare with existing models)

KITTI (compare with conventional CNN)

KITTI (truncated, 8 categories)

Figure 3. Sim LiDAR covers different objects and road conditions

Objects:
car, pedestrian, truck

Road conditions:
tunnel, open road
lower/upper bridge
road (walls on one/two side)
road (lamps on one/two side)

Sim LiDAR (robustness against noise)
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The proposed SNN only needs part of the input pulses!


