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Introduction and Motivation:

» Dealing with opioid addiction and its long-term consequences is » Popularity of this method stems from its capability of . Feature
£ ti t involving the boosting techniques along with preserving the T - .
Oof great importance. speed of optimization, for which K additive functions are used 3 > > >
e .. : - . to predict the output: 8353 -
» Quitting the opioid requires clinicians to arrange a gradual plan z=588 3 2§ 8 z
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» We propose continuous patient monitoring pervasively using where, /= f(z)=wq(,), where ¢ represents the tree c=<22245523222258=233
structure mapping a sample to the output of tree with 7/’ being ©
wearables and smart-phones. the number leaves with w equal to the leaves weights.
- - _ - Beside state-of-the-art performances in various tasks, one o
» we aim to predict the wellness of the opioid patients by important feature of the XGBoost is its interpretability. That

exactly advocates the reason why we employ XGBoost to deal
with our problem.
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employing extreme gradient boosting (XGBoost).
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1) We design and develop a mobile application that is capable of continuous 2 ﬁ;pmd((}_efi[l ): 10])

wearable monitoring and gives the ability to patients to actively engage in 6 ' — set(F)
their state self-reporting and performance oriented cognitive tasks. 7. T.F. < Sort(F')

> f1. @ top features for question k
> X : feature space
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> F' : set of unique members (features)
> I F. : top features
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2) We generate a dataset with ten different patients over the period of three
months and conduct pre-processing and annotation on the data.
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3) We extract a 15t to 4" order statistical hand-crafted features out of the
collected data, which helps the task of prediction to be carried out more

TOP FEATURES CONTRIBUTING TO THE PREDICTION OF THE SUBJECTS’ STATES.

accurately.
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6) Achievement in this study does not end with the subject level analysis, but
a few inter-population analyses are conducted, which investigate
possibility of generalization of the methods used for entire population of
patients.

Data Ac u Is Itl O n : . Top predictable questions (Prediction Accuracy )
q Subject (Age- gender) Ist ond 3rd ath 5th
Sub. 1 (30-M) PM1(1.0) PMJ(1.0) AM4(0.9615) PM2(0.8846) PM6(0.8846)
Sub. 2 (36-F) AM4(0.9565) PMJ3(0.9565) AMS(0.7391) | AM6(0.6956) | AMI1(0.6521)
- - - . Sub. 3 (63-F) PM35(0.9130) AMS(0.86935) PM7(0.869)3) AMI1(0.8260) | AM4(0.7826)
Multimodal recording and feature extraction: b4 AL A s e o A s
. “yu . Sub. 5 (55-F) PM3(0.9565) PM6(0.9565) PM4(0.9130) AM4(0.7826) PM5(0.7826)
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o _ o o _ ] Sub. 10 (48-F) PM3(1.0) PM4(1.0) AMS(0.6666) | AM6(0.6666) | AMI1(0.5833)
part|C|pated in a naturalistic drlvmg experiment with 6 Average Accuracy 0.9612 0.9342 0.8657 0.8202 0.7923
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TOP QUESTIONS WITH RESPECT TO THE ACHIEVED ACCURACY FOR PREDICTION.

secondary tasks.

Average accuracy for all 10 subjects Accuracies by ablation study on momentum

TABLE 1 B Features+all momentums
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RT variance
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Conclusion:

» High correlations were observed between the subjective and
objective measures

» We were able to rank subjects, wellness questions, and features
of multimodal measures using powerful method of extreme
gradient boosting
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