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Introduction

We propose Mutual Information Predictive Auto-Encoder (MIPAE) framework

for predicting future frames of a video sequence.

Modelling the predictive distribution of future frames is challenging due to

the high-dimentional nature of video frame sequences. MIPAE framework

reduces the task of predicting high dimensional video frames by factorising

video representations into content and low dimensional pose latent variables.

Content and the predicted pose representations then decoded to generate

future frames.

We also propose a Mutual Information Gap (MIG) metric to quantitatively access

and compare the effectiveness in disentanglement of latent representation.

PreviousWork

Concurrent video prediction methods, [2], [3], and [1] overcome the challenge

of making predictions in high dimensional pixel space by factorising video

representations into a low dimensional temporally varying component and

another temporally consistent component.

DRNET [1] disentangled video into content and pose representations by ap-

plying an adversarial loss term to confuse the discriminator classifying pose

vectors between same and different video sequences.

In MIPAE framework, the application of adversarial loss on pose latent repre-

sentations has been formalised as reducing mutual information between pose

representations across time.

Video representations are factorized by considering the temporal structure of

the content and pose generative factors, that is, the time independence of

content and time dependence of pose.

MIPAE Framework

1. We leverage the temporal structure in latent generative factors by applying the
following three loss functions in video prediction architecture shown in fig. 1:

Similarity Loss Lsim between the content latent representations zc of different frames

from a given sequence.

Mutual Information Loss LMI is minimized between the pose latent representations zt
p

across time.

Reconstruction Loss Lrecon , which is l2 reconstruction errorLrecon is minimised between

the ground truth and decoded frame to ensure proper reconstruction.

Training Objective

The overall training objective for Ec, Ep and D is as follows:

min
Ec,Ep,D

Lrecon + αLsim + βLMI (1)

Training object for the critic C is given by:

max
C

LC (2)

Model Architecture

Figure 1:Left: Training procedure for content encoderEc , Ep and D, training objectives. Right:

Process of recurrent generation of pose latent variables ẑt
p . These predicted pose vectors are

used to generate future frames by decoderD.

Mathematical Formulation of Objective Functions

Similarity Loss :Time invariance of content representation is enforced by pe-

nalizing change in content representation between two different frames from

the same video sequence that are separated by random offset k ∈ [0, K] time
steps:

Lsim = EP (xt,xt+k)

[
‖Ec(xt) − Ec(xt+k)‖2

2

]
(3)

Reconstruction Loss : Pixel-wise l2 loss is minimized between decoded frame

D(Ec(xt), Ep(xt)) and the ground truth frame xt:

Lrecon = EP (xt)
[
‖D(Ec(xt), Ep(xt)) − xt‖2

2
]

(4)

Mutual Information Loss : For estimating the mutual information between

zt
p and zt+k

p , we train a critic C to classify whether zt
p and zt+k

p are sampled

from joint distribution P (zt
p, zt+k

p ) or the product of marginal distributions
P (zt

p)P (zt+k
p ) by using the standard GAN discriminator objective, which is

maximized for the optimal critic:

LC = EP (xt,xt+k)

[
σ(C(Ep(xt), Ep(xt+k)))

]
+EP (xt)P (xt+k)

[
1 − σ(C(Ep(xt), Ep(xt+k)))

] (5)

We use a variational lower bound estimates of MI to enforce mutual information

loss,

LMI = EP (zt
p,zt+k

p )

[
C(zt

p, zt+k
p )

]
−EP (zt

p)P (zt+k
p )

[
exp(C(zt

p, zt+k
p ))

] (6)

Minimizing this MI estimate, restrictsEp from encoding any content information.



Training Procedure

The LSTM L is trained separately after training the main network, Ec, Ep and

D.

To predict a future frame x̂t, first, the LSTM L predicts ẑt
p from previous frame's

pose z̃t−1
p and content representation zC

c of the last known frame xC .

ẑt
p = L(zC

c , z̃t−1
p ) where z̃t

p =
{

Ep(xt) t < C + 1
L(zC

c , z̃t−1
p ) t ≥ C + 1

(7)

The training objective for L is to minimize the l2 loss between predicted poses,

ẑ2:C+T
p , and poses inferred from ground truth frames, z2:C+T

p .

DecoderD is used to generate the future frame x̂t from the content zc and the

predicted pose representation ẑt
p of the future frame, such that x̂

t = D(zC
c , ẑt

p).

MIG Metric

Concurrent evaluation method, for example, latent traversal are effective in find-

ing methods that are unable to disentangle the generative factors of data but do

not provide any quantitative measure of the effectiveness of disentanglement.

MIG can be used in scenarios where mutual information can be calculated (i.e

where factors of data generation are known a priori).

In our adaptation of the MIG metric for video prediction, mutual information is

calculated between generative factors and the learned pose, content represen-

tations:

MIG =
0.5

H(fc)

(
I(fc, zc) − I(fc, zp)

)
+

0.5
H(fp)

(
I(fp, zp) − I(fp, zc)

)
(8)

Results Analysis

MIG metric score of MIPAE and DRNET can be found in Tab.1. Our method

has a higher MIG score as compared to DRNET indicating better pose/ content

disentanglement. These findings are further supported by visual comparison of

generated future frames by both methods, depicted in Fig. 3.

Qualitative comparison of disentanglement on MPI 3D Real Fig. 2. It can be

seen that DRNET reconstructs cube as cylinder (the magnified part) where as

our method reconstructs correctly.

Demonstration of pose-content disentanglement by DRNET and MIPAE Fig.

2. It can be seen that our model generates sharp frames in contrast to blurry

predictions by DRNET in frames involving complex interactions between MNIST

digits due to better content/ pose disentanglement.

Results

Table 1:MIG Scores

Dataset Experiment I(fc, zc) I(fc, zp) I(fp, zc) I(fp, zp) MIG

Dsprites
DRNET [1] 5.6476 0.7483 0.0748 6.3434 0.8574

Ours 5.6992 0.4660 0.725 6.4977 0.8975

MPI3D Real
DRNET [1] 8.1353 0.0376 0.0448 6.2029 0.5658

Ours 8.3866 0.0461 0.0080 7.1034 0.6126

(a) DRNET (b) MIPAE

Figure 2:Qualitative comparison of disentanglement on MPI 3D Real

(a) DRNET (b) MIPAE
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Figure 3:Qualitative comparison on moving MNIST dataset
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