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B Facial expression recognition is inherently a challenging task, especially | ™ Attentive Hybrid Architecture (AHA) employs separate feature losses to
for the in-the-wild images with various occlusions and large pose encourage high attention weights for the most important regions and a large

variations, which may lead to the loss of some crucial information margin cosine loss for discriminative features in the whole network.
, B We introduce a two-step fusion strategy to capture the hidden relations among

different face regions.

B The new state-of-the-art performance on CK+, FER-2013, SFEW2.0 and RAF-
DB datasets.

B Fusing different face regions features by using a simple sum or concat
may hardly capture the latent correlations among those regions.

Attentive Hybrid Architecture (AHA)

Attentive Region Module Two-Step Fusion Module
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» Aim to capture the correlations
among different regions.

» Aim to extract attentive hybrid
features.

(D The first step isto explore the
correlation among different

(D Aregion align (ALG)
component to generate aligned
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face regions , which helps the [ W CNNs (; )sm | | region features by a recurrent
network to deal with large pose ALG Aigned @a Concat | | fusion conducted on its own
variations. §5H) Attontion | 5 Loss | | feature, which 1s called

(2 Then, those face regions are fed = | g wsm j recurrent fusion step.
into several parallel sub- " hik — LSTM( zﬁk’ h,li’“‘l)
networks to extract hybrid 3

l l
features. h; = Z h;’
k=1

(3) After that, the spatial attention module is further employed to extract

discriminative features. 2) The second step seeks to find the final discriminative features for facial expression

recognition by concatenating these three features from the first step, namely sum
operation step.

* The total loss of training the whole network: z; = concat(h’, A, 27"
L= ——Zlog Py (2:)) - —LLLlog HC)
1=1 ecP k=
Experiments
O State-of-the-art performance on RAF-DB, SFEW 2.0, FER-2013 and CK+ datasets O Visualizations of the attention maps
generated on RAF-DB
TABLE 1 TABLE 111
THE ANALYSIS OF ATTENTIVE REGION MODULE ON RAF-DB AND SFl Typ coMPARISONS ON RAF-DB. SFEW 2.0. FER-2013 AND CK+.
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TABLE 11
THE ANALYSIS OF TWO-STEP FUSION MODULES ON RAF-DB aAND SFEW
2.0. SIMPLE FULL FEATURE CONCATENATION(CONCAT) AND TWO-STEP
FUSION(TWO-STEP).
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Fig. 5. Visualization of the atiention maps generated on the RAF-DB.
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Fig. 4. The confusion matrix on RAF-DB.




