
We designed a stochastic adjustment system SPA
for SNNs and designed a stochastic integration core
which is similar to OPU for spiking neurons. This
mechanism has produced improvements on
different unsupervised SNN architectures. The
experimental results show that, without more
computations required, the maximum
improvements of our method in training accuracy
are 1.99% and 6.29% on the MNIST and EMNIST,
and the improvements in testing accuracy can be up
to 0.89% and 2.81% on the MNIST and EMNIST. In
addition, we used the statistical properties of the
stochastic integration process of the neurons in the
mapping model, and used the computing cores in
an equivalent differential form when calculating
neuron parameters.

SNNs consist of input spike generators, computing
units (i.e. spiking neurons), connection synapses,
and output decoding. SNNs are promising to
achieve ultra-low power consumption because each
spiking neuron in SNNs works asynchronously in an
event-driven manner like the human brain[1][2]. In
contrast to ANNs processing continuous signals in
deep learning, spiking neurons are similar to
biological neurons so that SNNs process discrete
signals.
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For SNNs’ training, unlike widely used supervised
learning using a loss function to measure the
difference between actual output and target output
(i.e. label), unsupervised SNNs let neurons adjust
their own synaptic weights according to their
spiking activities, which is similar to the process of
real neurons in the human brain. The most used
unsupervised learning rule for SNN is the
mentioned STDP rule, which is based on Hebb rule.
In addition, researchers should not only focus on
the learning methods of a neural network system,
because the architecture of a network is also very
important for creating a more advanced artificial
intelligence system. Some scholars have suggested
that the architecture of a neural network itself
might be more important than how it learns[3].
Here, by ‘architecture’ we mean spiking neuron
models, synapse models, and connection topology.
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Spiking neural networks (SNNs) receive widespread
attention because of their low-power hardware
characteristic and brain-like signal response
mechanism, but currently, the performance of SNNs
is still behind Artificial Neural Networks (ANNs). We
build an information theory-inspired system called
Stochastic Probability Adjustment (SPA) system to
reduce this gap. The SPA maps the synapses and
neurons of SNNs into a probability space where a
neuron and all connected pre-synapses are
represented by a cluster. The movement of synaptic
transmitter between different clusters is modeled
as a Brownian-like stochastic process in which the
transmitter distribution is adaptive at different
firing phases. We experimented with a wide range
of existing unsupervised SNN architectures and
achieved consistent performance improvements.
The improvements in classification accuracy have
reached 1.99% and 6.29% on the MNIST and
EMNIST datasets respectively.

Abstract

MNIST: The proposed SPA method improves the
training accuracy by 0.68%, 1.68%, and 1.99% on
the SNN architectures of [5], [6], and [7], and
improves the testing accuracy by 0.36%, 0.78%, and
0.99% respectively. The training accuracy reached
96.20%, 97.44%,98.01% and the testing accuracy
reached 95.36%, 95.85, 96.63% with SPA
respectively. The speed comparison is shown in
Table I.
EMNIST: With SPA, the training/testing accuracy
increases by 4.49%/2.79% in [6], and the
training/testing accuracy increases by 6.29%/1.86%
in [7].

Introduction

Stochastic Probability Adjustment (SPA) system
composed of adaptive spiking neuron models and
stochastic synapse models with Gaussian
distributed synaptic transmitter. Our system can be
used in a wide range of unsupervised SNN
frameworks and improve their classification
performance. The adaptive adjustments of SPA are
as follows:
1) Adaptive selection of the synapse model. A single
synapse has both the characteristics of excitatory
and inhibitory synapses. The required type (i.e
excitatory or inhibitory) and distribution of
synapses are determined by a Boolean selection of
0 and 1;
2) The reception rate of transmitter self-adapts
using Brownian-like random process[4], thereby
mitigating the influence of neuron voltage;
3) The overall stochastic SPA system and it’s closed-
loop control methods.

Methods and Materials

Inspired by neuroscience, we explained the
relationship between the characteristics of neuron
behaviors and parameters through algorithms, and
established a model mapping SNNs into a
probability space. Our main idea is an adaptive
generalized Wiener-random process. Based on the
experiments, our research can be further extended
in many aspects. The next step may be sparse
coding of neuron connections or self-learning of
SNN architecture. After obtaining the precise
characteristics of transmitter changing, we can try
more transmitter modeling other than
conductance.

Discussion

Conclusions

Results

Fig 1. SNN mapped into probability space (𝛺, 𝐴, 𝑃) and synapses clusters.

Fig 2. Real synapses and virtual synapses on timeline, and the
post-synaptic potential change is caused by the superposition of
multiple independent pre-synapses.

Table I. COMPARISON OF TRAINING CONVERGENCE SPEED ON MNIST

Paper 
Training

samples 
Scales 

Origin 

accuracy 

testing 

SPA 

results

Diehl et al.

2015 [5] 
60000

100 82.9% 86.62%

400 87.0% 92.28%

600 91.9% 94.60%

She et al.

2019 [8] 
60000 1000 92.2% /

Paper
Training

accuracy

SPA

training

accuracy

Testing

accuracy

SPA

testing

accuracy

Diehl et al.

2015
58.68% / low /

Saunders et

al.2019 [6]
73.92% 78.41% 67.68% 70.47%

Meng et al.

2019 [7]
83.30% 89.59% 79.86% 81.72%

Table II. RESULTS COMPARISON ON EMNIST WITH UNSUPERVISED LEARNING

Fig 3. The overall SNN balance system flowchart, where the mapping stochastic model is in the external dashed box, the specific stochastic process is in the internal dashed

box. The control process includes self-adaptive adjustment and controlled adjustment.


