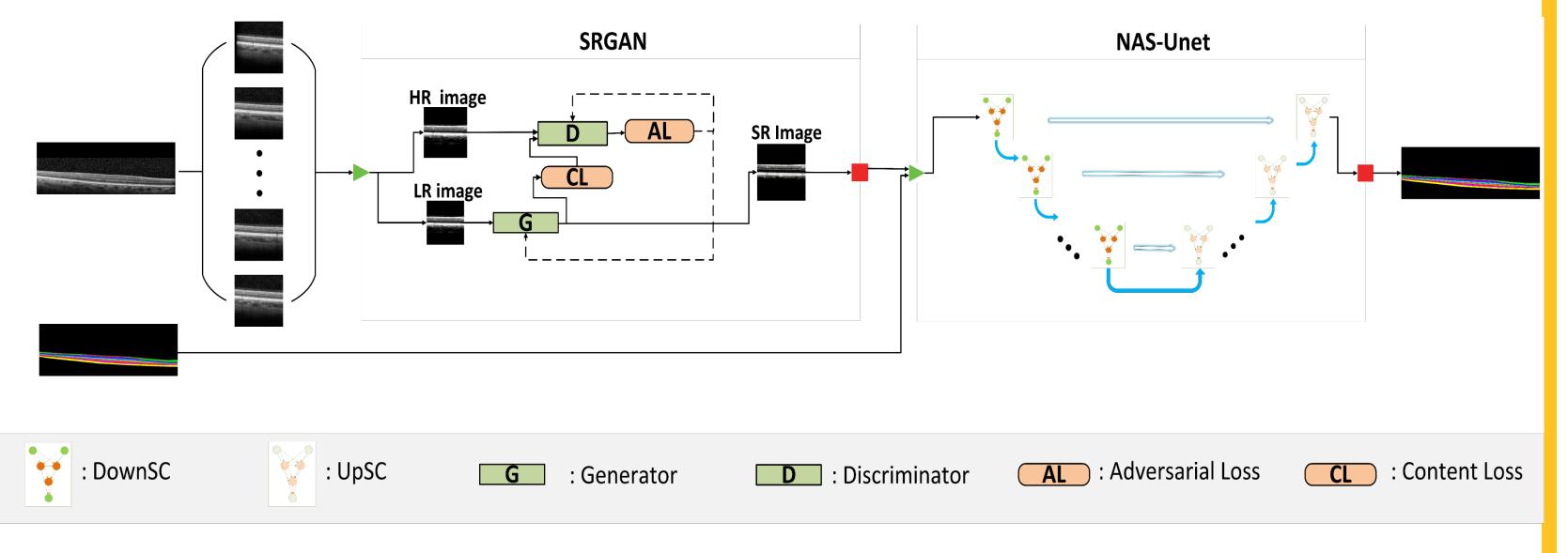
OCT Image Segmentation Using Neural Architecture Search and SRGAN

Omid Dehzangi, Saba Heidari Gheshlaghi, Annahita Amireskandari, Ali Rezai, Nasser Nasrabadi Rockefeller Neuroscience Institute, West Virginia University, Morgantown, USA

Introduction and Motivation:

- 5.8 million people in the US are suffering from AD disease.
- AD is currently ranked as the sixth leading cause of death in the United States.
- necessary to expand our understanding of this irreversible and progressive brain disorder.
- Different medical procedures are used to diagnosis AD:
 - **Position Emission Tomography (PET)**
 - Magnetic Resonance Imaging (MRI)

The proposed architecture:



WVURockefeller Neuroscience Institute

- **Optical Coherence Tomography (OCT)?**
 - Hypothesis: retina layer thickness change
 - The first step: retina layer segmentation

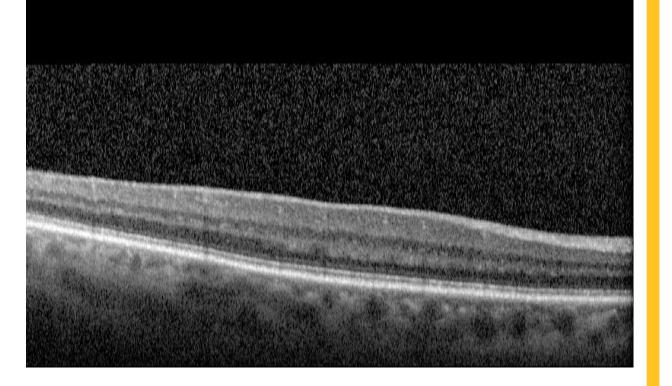
Pre-processing:

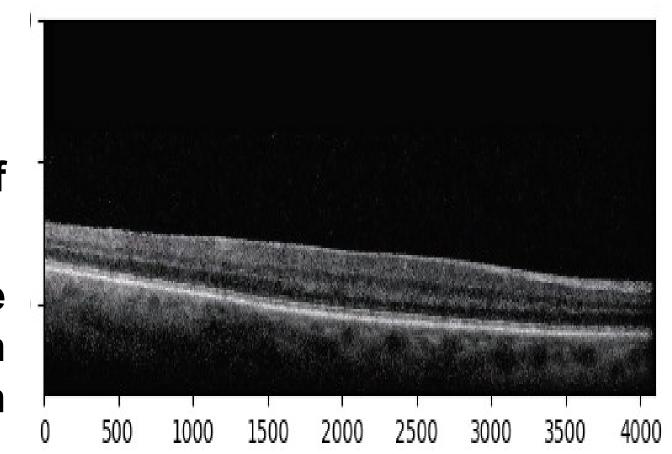
Data Augmentation:

- cropping the original 340×1024 OCT images to 300×300 images with an 50% overlapping.
- > horizontal flipping applied for further data augmentation

Improving the Resolution:

- Super Resolution GAN (SRGAN)
- > upsamples these images by a factor of four producing HR images



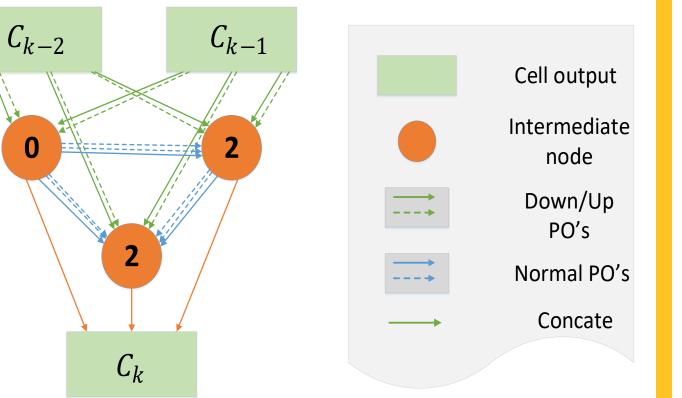


NAS-Unet Search Space:

- NAS requires massive computational resources to achieve good results.
- To tackle this problem \rightarrow repeatable cells and keep the backbone network fixed is introduced.
- In this work, NAS algorithm searches for the U-like backbone architecture. The down-sampling Cell(DownSC) and up-sampling Cell (UpSC)

NAS-Unet Search Strategy:

The search space is mostly represented by using a single directed acyclic graph (**DAG**).

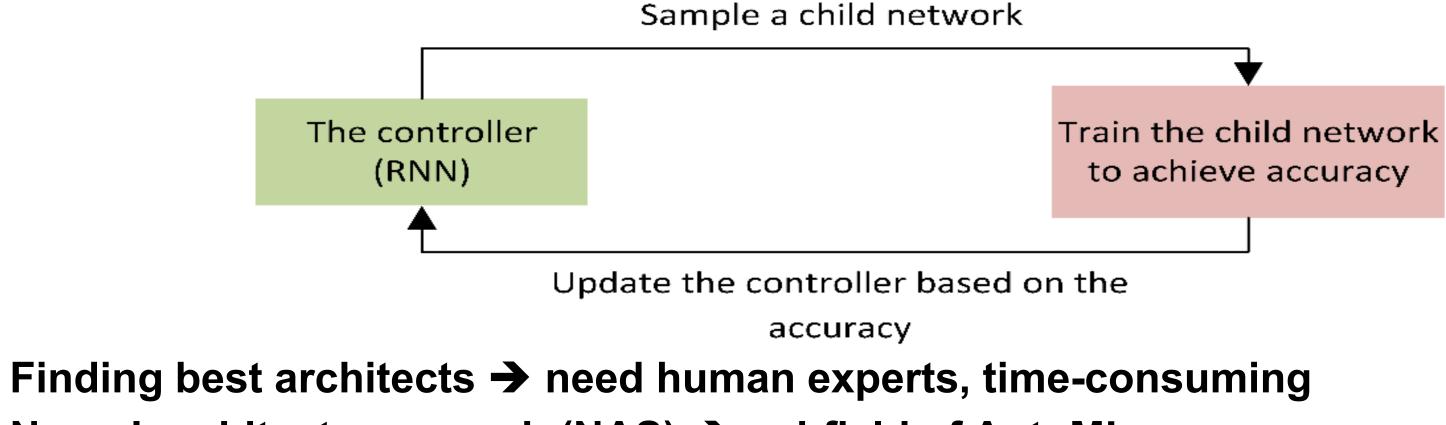


- NAS will look for the best operation for each cell.
- idea of ProxylessNAS is used which could directly learn the architectures for large-scale tasks
- changes the search space from a discrete set of candidates to a continuous one.
- helps the algorithm to be faster and more generalized in both recurrent and convolutional architectures.

- consists of 16 residual blocks, and the loss is calculated using the Euclidean distance between the feature maps from the network and pre-trained VGG19.
- This SRGAN step helps us to have higher resolution OCT images, so that the NAS network will work more efficient to find the best Unet network

Methodology:

Neural Architecture Search (NAS) & Unet



Neural architecture search (NAS) \rightarrow subfield of AutoML.

Various types of primitive operations (PO) used for searching the best cell architectures

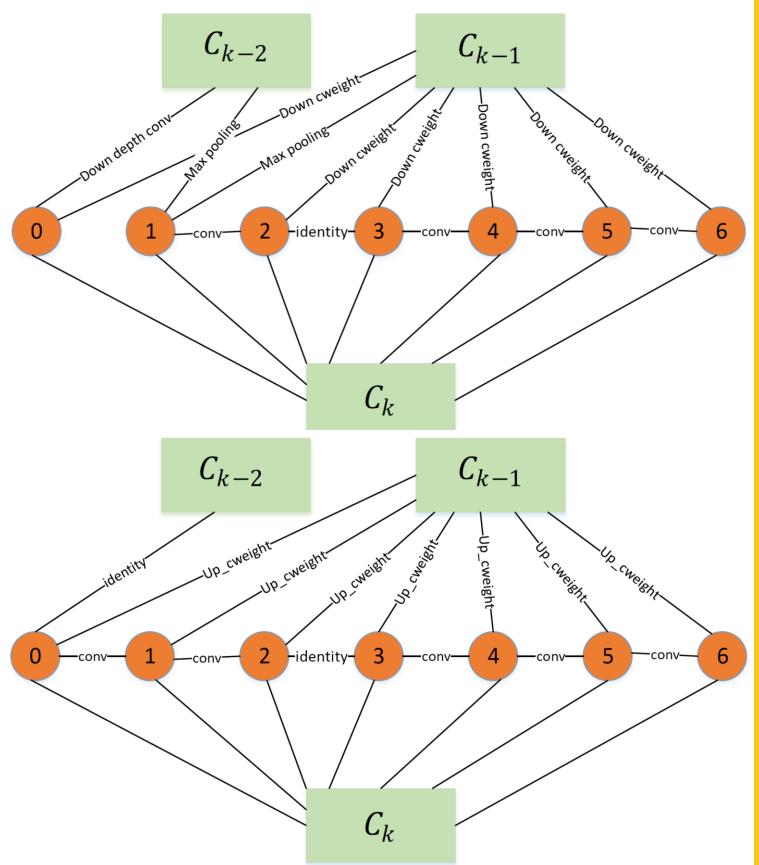
- > two NVIDIA GeForce RTX 2080 Ti GPU having 12 GB \succ takes about 1 day to run on the OCT scan dataset.
- \succ SRGAN with kernel size of (5 \times 5) and scaling factor 4.
- > 7 intermediate nodes for both DownSC and UpSC blocks.
- > 300 epochs
- SGD optimizer with momentum 0.95
- cosine learning rate in the range of 0.025 to 0.01
- > weight decay of 0.0003

DownSC operations	UpSC Operations	Normal Opeations		
Average pooling	Up cweight	Identity		
Max Pooling	Up deph conv	Cweight		
Down Conv	Up Conv	Conv		
Down cweight	Up dilation conv	Dilation Conv		
Down Dilation Conv		Depth Conv		
Down depth Conv				

Results:

TABLE II: Comparison of NAS-Unet with/without SRGAN and human-designed Unet.

Model	mIou	DSC	Time
Unet	0.68	0.649	6h
NAS-Unet without SRGAN	0.945	0.769	1d-1h
NAS-Unet with SRGAN	0.951	0.791	1d-6h



- NAS could find the best network architecture by maximizing the performance of the evaluation data.
- NAS process has categorized into three steps:
 - Search space
 - Search strategy
 - **Performance estimation strategy**

Unet:

- Famous architecture in the field of medical image semantic segmentation.
- A encoder-decoder (DownSampling-UpSampling) network.
- Encoder \rightarrow extracts the high-level context (semantic features)
- Decoder \rightarrow regenerates the spatial information and pixel classification results (image reconstructs)
- NAS-Unet algorithm
 search for down- and up-sampling blocks that yield a higher accuracy on validation set.

TABLE III: NAS-Unet network results on our OCT dataset.

Epoch	Pixel Accuracy	mIou	DSC
50	0.453	0.422	0.438
100	0.602	0.598	0.486
150	0.835	0.831	0.632
200	0.892	0.890	0.707
250	0.926	0.924	0.771
300	0.952	0.951	0.791

Conclusion:

Our proposed SRGAN NAS-Unet network was evaluated by training on our in-house OCT dataset for retina layer segmentation with high precision. This information is critical toward OCT-based AD diagnosis.

http://www.wssplab.net/