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Data Augmentation:

➢ cropping the original 340×1024 OCT

images to 300×300 images with an 50%

overlapping.

➢ horizontal flipping applied for further

data augmentation

Improving the Resolution:

➢ Super Resolution GAN (SRGAN)

➢ upsamples these images by a factor of

four producing HR images

➢ consists of 16 residual blocks, and the

loss is calculated using the Euclidean

distance between the feature maps from

the network and pre-trained VGG19.

➢ This SRGAN step helps us to have higher

resolution OCT images, so that the NAS

network will work more efficient to find

the best Unet network

Introduction and Motivation:

Pre-processing:

Methodology:

➢ The proposed architecture:

Results:

➢ Our proposed SRGAN NAS-Unet network was evaluated by training on

our in-house OCT dataset for retina layer segmentation with high

precision. This information is critical toward OCT-based AD diagnosis.

➢ 5.8 million people in the US are suffering from AD disease.

➢ AD is currently ranked as the sixth leading cause of death in the United 

States.

➢ necessary to expand our understanding of this irreversible and 

progressive brain disorder.

➢ Different medical procedures are used to diagnosis AD:

➢ Position Emission Tomography (PET) 

➢ Magnetic Resonance Imaging (MRI) 

➢ Optical Coherence Tomography (OCT)?

➢ Hypothesis: retina layer thickness change

➢ The first step: retina layer segmentation

Neural Architecture Search (NAS) & Unet

Conclusion:

http://www.wssplab.net/

➢ Finding best architects ➔ need human experts, time-consuming

➢ Neural architecture search (NAS) ➔ subfield of AutoML.

➢ NAS could find the best network architecture by maximizing the

performance of the evaluation data.

➢ NAS process has categorized into three steps:

➢ Search space

➢ Search strategy

➢ Performance estimation strategy

Unet:

➢ Famous architecture in the field of medical image semantic segmentation.

➢ A encoder-decoder (DownSampling-UpSampling) network.

➢ Encoder ➔ extracts the high-level context (semantic features)

➢ Decoder ➔ regenerates the spatial information and pixel classification

results (image reconstructs)

➢ NAS-Unet algorithm search for down- and up-sampling blocks that yield a

higher accuracy on validation set.
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Various types of primitive operations (PO) used for 

searching the best cell architectures

NAS-Unet Search Space:

➢ NAS requires massive computational resources to achieve good results.

➢ To tackle this problem ➔ repeatable cells and keep the backbone

network fixed is introduced.

➢ In this work, NAS algorithm searches for the U-like backbone

architecture. The down-sampling Cell(DownSC) and up-sampling Cell

(UpSC)

NAS-Unet Search Strategy:

➢ The search space is mostly represented

by using a single directed acyclic graph

(DAG).

➢ NAS will look for the best operation for

each cell.

➢ idea of ProxylessNAS is used which could directly learn the architectures

for large-scale tasks

➢ changes the search space from a discrete set of candidates to a

continuous one.

➢ helps the algorithm to be faster and more generalized in both recurrent

and convolutional architectures.

➢ two NVIDIA GeForce RTX 2080 Ti GPU having 12 GB 

➢ takes about 1 day to run on the OCT scan dataset.

➢ SRGAN with kernel size of (5 ×5) and scaling factor 4.

➢ 7 intermediate nodes for both DownSC and UpSC

blocks.

➢ 300 epochs 

➢ SGD optimizer with momentum 0.95

➢ cosine learning rate in the range of 0.025 to 0.01

➢ weight decay of 0.0003


