Introduction

- **Goal**
 - Developing a framework to retrieve aerial images with rotational variations
 - Merger group convolution with attention mechanism and metric learning

- **Motivation**
 - Retrieving rotated aerial images is highly complex
 - Contains small objects and buildings with variations
 - Robust retrieval framework for rotated aerial images in demand

- **Challenges**
 - Viewpoint changes from aircraft with an onboard camera
 - Large variations in rotation, angle, and scale
 - Difficult to extract features from or compare similarities to each other
 - Heavy computation cost due to large size and complexity of aerial images

- **Related Works**
 - Group equivariant convolutional networks [Cohen et al., 2016]
 - Extract features from rotated filters
 - Convolutional block attention module [Woo et al., 2018]
 - Focuses on critical regions given an image
 - Deep metric learning using triplet network [Hoffer et al., 2015]
 - Considers distance between three tuples

Methods

- **Group convolutional neural network**
 - Utilizing rotated filters to pretrain the network for classification task
 - Similar number of parameters compared to CNN
 - Input image is convoluted with different rotated filters
 - Fine-tuning network with attentive G-CNN and metric learning

- **Deep metric learning**
 - Transforming convoluted features maps into features in embedding space
 - Integrating triplet loss function to train data tuples
 - Anchor image is the target ground truth image
 - Positive image denotes the same location image but with time variation
 - Negative image is a completely different region and time image
 - Minimizing the relation distance between the anchor and positive tuples
 - Maximizing the distance between the anchor and negative tuples

- **Channel attention module**
 - Emphasizing the important feature maps among layers
 - Refining feature maps with spatial transformation information after passing G-CNN
 - Considering inter-channel relations
 - Focusing on critical regions given an input image
 - Improving retrieval performance compared to the baseline G-CNN

Experiments

- **Quantitative results**
 - Evaluation metric: Recall@n
 - Recall@n is the percentage of correctly retrieved queries within top n retrieved database images

- **Class activation mapping results**
 - Large variations in rotation, angle, and scale
 - Difficult to extract features from or compare similarities to each other
 - Heavy computation cost due to large size and complexity of aerial images