Rotation Invariant Aerial Image Retrieval with Group Convolutional Metric Learning

Hyunseung Chung¹, Woo-Jeoung Nam², Seong-Whan Lee^{1,2}

¹Department of Artificial Intelligence, Korea University

²Department of Computer and Radio Communications Engineering, Korea University

E-mail: {hs_chung, nwj0612, sw.lee}@korea.ac.kr

Introduction

Goal

- Developing a framework to retrieve aerial images with rotational variations
 - Merging group convolution with attention mechanism and metric learning

Motivation

- Retrieving rotated aerial images is highly complex
 - Contains small objects and buildings with variations
- Robust retrieval framework for rotated aerial images in demand

Examples of aerial images

Challenges

- Viewpoint changes from aircraft with an onboard camera
 - Large variations in rotation, angle, and scale
 - Difficult to extract features from or compare similarities to each other
- Heavy computation cost due to large size and complexity of aerial images

Related Works

- Group equivariant convolutional networks [Cohen et al., 2016]
 - Extract features from rotated filters
- Convolutional block attention module [Woo et al., 2018]
- Focuses on critical regions given an image
- Deep metric learning using triplet network [Hoffer et al., 2015]
- Considers distance between three tuples

Group equivariant convolution feature maps

Example of data tuples for triplet network

Methods

Group convolutional neural network

- Utilizing rotated filters to pretrain the network for classification task
- Similar number of parameters compared to CNN
- Input image is convoluted with different rotated filters
- Fine-tuning network with attentive G-CNN and metric learning

Classification

Network Positive image denotes the sate and the sate of the sate

Channel Attention Negative Maps Overall architecture of G-CNN for classification and retrieval tasks

Group Convolution with

Deep metric learning

- Transforming convoluted features maps into features in embedding space
- Integrating triplet loss function to train data tuples
 - Anchor image is the target ground truth image
 - Positive image denotes the same location image but with time variation
 - Negative image is a completely different region and time image
- Minimizing the relation distance between the anchor and positive tuples
- Maximizing the distance between the anchor and negative tuples

◆ Channel attention module

- Emphasizing the important feature maps among layers
 - Refining feature maps with spatial transformation information after passing G-CNN
- Considering inter-channel relations
- Focusing on critical regions given an input image
- Improving retrieval performance compared to the baseline G-CNN

Experiments

Retrieval results

Examples of retrieval results in rotated Google Earth South Korea dataset

Quantitative results

- Evaluation metric: Recall@n
- Recall@n is the percentage of correctly retrieved queries within top n retrieved database images

Methods	Recall@n(%)			
	n = 1	n = 5	n = 10	n = 100
R-MAC descriptor †	6.5	14.5	24.8	64.0
NetVLAD †	7.4	17.4	25.1	68.2
Contrastive loss †	8.1	16.8	24.5	65.0
Triplet loss †	6.9	18.0	24.7	65.6
LDCNN †	8.9	18.4	24.7	66.6
G-CNN (p4m) + Cont. loss	17.8	32.4	38.9	72.0
G-CNN (p4m) + Cont. *	18.5	32.8	39.8	72.0
G-CNN (p4) + Triplet loss	20.1	36.0	43.2	76.9
G-CNN (p4) + Triplet. +	21.2	36.4	43.9	77.2
G-CNN (p4m) + Triplet loss	23.4	44.0	51.7	84.6
G-CNN (p4m) + Triplet. *	24.5	46.9	52.8	86.3

Retrieval results (rotated Google Earth South Korea dataset)

Class activation mapping results

CAM results of query image rotated in increments Top row: CNN, second row: G-CNN, last row: Attentive G-CNN