

ISTITUTO ITALIANO DI TECNOLOGIA PATTERN ANALYSIS AND COMPUTER VISION

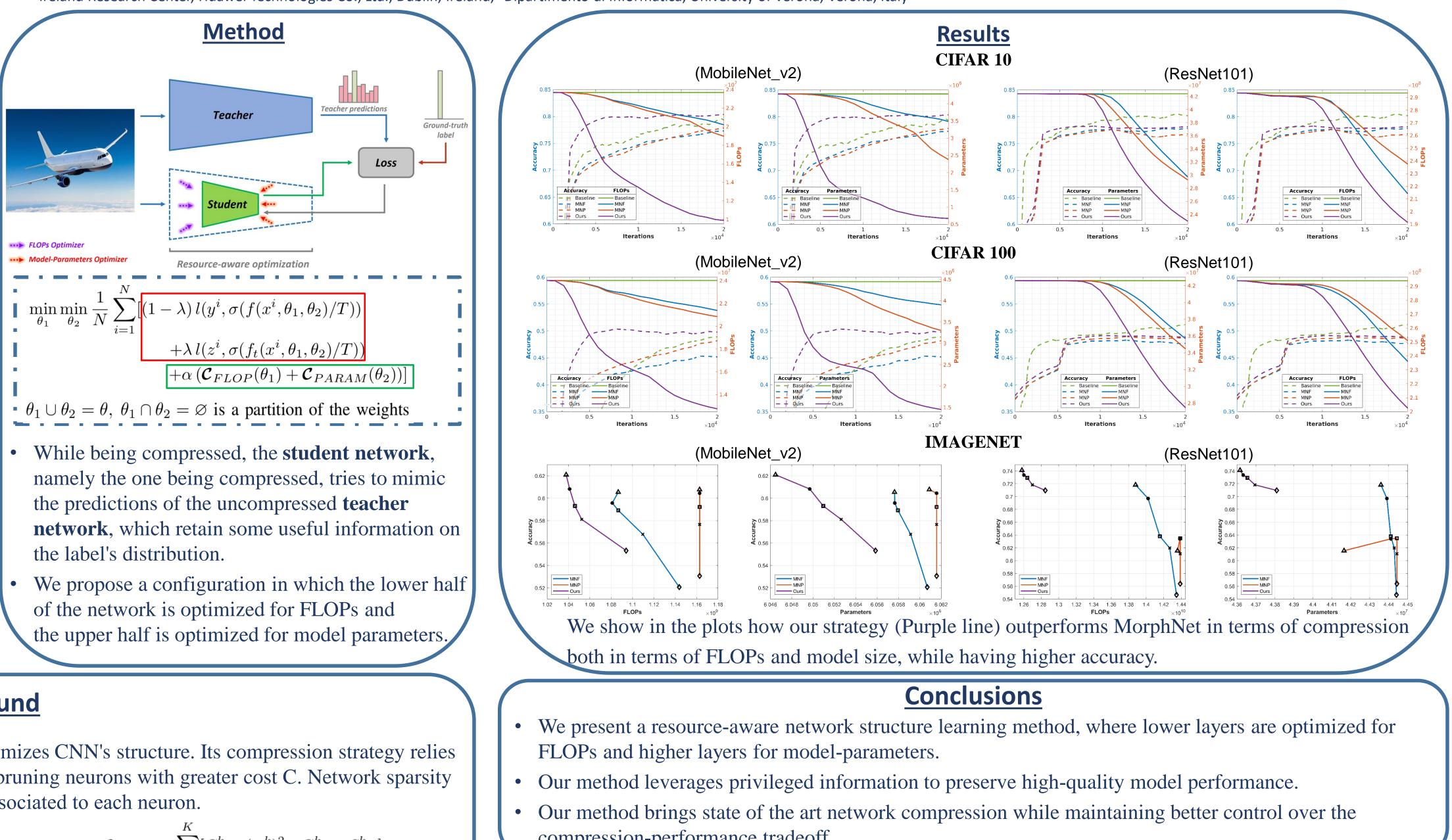
{wagar.ahmed, pietro.morerio, vittorio.murino}@iit.it; andrea.zunino@huawei.com

¹Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Genova, Italy

²Dipartimento di Ingegneria Navale, Elettrica, Elettronica e della Telecomunicazioni, University of Genova, Italy

³Ireland Research Center, Huawei Technologies Co., Ltd., Dublin, Ireland, ⁴Dipartimento di Informatica, University of Verona, Verona, Italy

Motivation


CNNs are ubiquitous in computer vision. It is well known that they require considerable resources in terms of both Computation and Memory, being often deployed on big and powerful gpus. Compression techniques can partially handle these issues, resulting in smaller models with less parameters and Floating point operations (FLOPs).

However, complexitiy reduction usually comes at the price of a drop in the model performance.

Contributions

We propose a novel pipeline which leverages **Resource-aware optimization** and **Privileged Information** (**PI**)

- **Resource-aware optimization** breaks down the network in smaller instances with different compression needs.
- Privileged Information (PI) is provided during training in the form of extra supervision in a teacher-student framework [1].

Background

We build on **MorphNet** [2] whose training procedure optimizes CNN's structure. Its compression strategy relies on a regularizer, which induces sparsity in activations by pruning neurons with greater cost C. Network sparsity is measured by the batch normalization scaling factor γ associated to each neuron.

The **cost C** can be either associated to neurons contributing to either FLOPs or size (number of parameters).

$$\mathcal{C}_{FLOP} = \sum_{k=1}^{K} [C_{in}^k * (w^k)^2 * C_{out}^k * S_o^k]$$
$$\mathcal{C}_{PARAM} = \sum_{k=1}^{K} [C_{in}^k * (w^k)^2 * C_{out}^k]$$

k=1

Compact CNN Structure Learning by Knowledge Distillation Waqar Ahmed^{1,2}, Andrea Zunino³, Pietro Morerio¹ and Vittorio Murino^{1,3,4}

- compression-performance tradeoff.

References

[1] Lopez-Paz, David, et al. "Unifying distillation and privileged information. "ICLR 2016 [2] A. Gordon, et al, "Morphnet: Fast & simple resource-constrained structure learning of deep networks." CVPR 2018

