Are Multiple Cross-Correlation Identities better than just Two? Improving the Estimate of Time **Difference-of-Arrivals from Blind Audio Signals**

Danilo Greco^{1,2}, Jacopo Cavazza^{1,3}, Alessio Del Bue^{1,3}

¹ Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italv

² Elect., Electron. and Telecom. Eng. and Naval Arch. Department, University of Genoa, 16126, Genoa,

🧑 DITEN III t

THE PROBLEM

Given an unknown audio source, the estimation of time differences-ofarrivals (TDOAs) can be efficiently and robustly solved using blind channel identification and exploiting the cross-correlation identity (CCI). Prior ``blind'' works have improved the estimate of TDOAs by means of different algorithmic solutions and optimization strategies, while always sticking to the case N = 2 microphones. But what if we can obtain a direct improvement in performance by just increasing N?

In this paper we try to investigate this direction, showing that, despite the arguable simplicity, this is capable of (sharply) improving upon stateof-the-art blind channel identification methods based on CCI, without modifying the computational pipeline. Inspired by our results, we seek to warm up the community and the practitioners by paving the way (with two concrete, yet preliminary, examples) towards joint approaches in which advances in the optimization are combined with an increased number of microphones, in order to achieve further improvements.

We extend the experimental validation of the state-of-the-art method based on CCI (IL1C [Crocco & Del Bue 2016]) on a variety of audiosignals (synthetic pink/white noise, two different plastic rustles, an adult male voice, dog barking, stapler and hand-clapping), while also considering N = 3, 4, 5 or N =10 microphones (N = 2 was only considered in [Crocco & Del Bue 2016]).

ISTITUTO ITALIANO DI TECNOLOGIA PATTERN ANALYSIS

- By increasing the number of microphones, we achieve an increased robustness towards outliers and a better accuracy in estimating TDOAs - without changing the computational pipeline of the backbone method.
- We propose a novel ensemble strategy in which pairs of microphones are fused to improve the estimation of TDOAs:

 $\mathbf{p}_n^{\top}\mathbf{h}_n = 1,$

s.t.

 $\sum_{i} \|\mathbf{h}_{i}\|_{1} < \varepsilon$

 $\mathbf{h}_1, ..., \mathbf{h}_N \ge 0.$

Italv

Blind channel identification using cross-correlation identity (CCI)

Robust Estimate of TDOAs

min

 $\mathbf{h}_1,..,\mathbf{h}_N$

Iterative weighted L1 Constraint: IL1C

 $\| \mathtt{Y}_n \mathbf{h}_m - \mathtt{Y}_m \mathbf{h}_n \|_2^2$

Casting the CCI as a loss function: the audio that each microphone acquires from the source must "agree" with the other microphones. See [Crocco & Del Bue 2016]

Optimizing over the Acoustic Impulse Responses (AIR), one per microphone

EXPERIMENTAL RESULTS

Method	N	Setup			white noise	pink noise							
Method	IN	Setup	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1	
IL1C	2	[Crocco-& Del. Ber 2006]	0.2153	0.2636	0.3102	0.7642	2.0156	4.984	4.5005	4.8002	4.5834	5.2774	
IL1C	3	ours	0.2238	0.222	0.2528	0.8388	1.6932	4.3063	5.5322	4.2378	5.2365	4.7675	
IL1C	4	ours	0.2398	0.2617	0.4049	0.9531	2.1781	4.3561	5.7132	5.2493	5.2118	5.4812	
IL1C	5	ours	0.2415	0.2585	0.3318	1.1083	2.1126	4.3109	5.2371	4.76	5.59	6.1503	
IL1C	10	ours	0.2495	0.2815	0.4609	1.0902	2.1065	4.529	4.7427	4.7853	6.0846	6.0842	

Method	N	Setup		plastic rustle no. 1 (bag) plastic rustle							tle no. 2 (bottle)		
Method	IN	Setup	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1	
IL1C	2	(COLOR & DEL BUE 2016]	0.2489	0.2419	0.4454	1.4199	2.8224	4.5856	2.8086	3.8703	4.1446	4.3346	
IL1C	3	ours	0.2519	0.4724	0.2879	1.2378	2.8866	4.362	4.2216	4.7789	5.045	5.614	
IL1C	4	ours	0.2598	0.254	0.9009	1.2666	2.7452	4.5136	5.0302	4.107	4.44	6.0028	
IL1C	5	ours	0.2581	0.3368	0.5515	1.3383	3.1889	3.483	4.7622	4.3169	5.2023	5.8363	
IL1C	10	ours	0.2731	0.2766	0.3143	1.24	2.3357	5.8363	5.8825	5.9941	5.8367	5.9526	

N	Calum		ad	ult male vo	ce			(log barking		
IN	Setup	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1
2	[Crocco & Det Bue 2036]	0.2654	0.5665	0.6481	3.3806	2.93	0.2378	0.5777	1.5409	2.2086	4.5964
3	ours	0.2728	0.4416	0.3726	2.0912	3.229	0.2618	0.5487	1.1899	2.2948	3.9943
4	ours	0.2636	0.358	0.8295	1.6993	2.9215	0.2563	0.2802	1.0446	2.0303	3.058
5	ours	0.2641	0.4972	1.0297	1.6344	2.0912	0.2833	0.4283	0.5584	1.6376	3.2308
10	ours	0.2906	0.4313	0.6133	1.6644	2.3752	0.2744	0.3589	0.6838	1.7842	2.7217
	2 3 4 5	2 presented a ours 4 ours 5 ours	2 Sec.201 3 Ours 0.2654 4 Ours 0.2636 5 Ours 0.2641	N Setup s=0.01 s=0.1 2 Recentation 0.2654 0.5665 3 ours 0.2728 0.4416 4 ours 0.2636 0.358 5 ours 0.2641 0.4972	Setup s=0.1 s=0.2 2 Decessor 0.2654 0.5665 0.6481 3 ours 0.2728 0.4416 0.3726 4 ours 0.2636 0.388 0.8295 5 ours 0.2641 0.4972 1.0297	s=0.1 s=0.2 s=0.5 2 2 2 0.2554 0.5665 0.6481 3.3806 3 0urs 0.2728 0.4416 0.3726 2.0912 4 0urs 0.2636 0.538 0.8295 1.6933 5 0urs 0.2641 0.4972 1.0297 1.6344	N Setup s=0.1 s=0.2 s=0.5 s=1 2 Identifying 0.2654 0.5665 0.6481 3.3005 2.33 3 ours 0.2728 0.4416 0.3726 2.0912 3.229 4 ours 0.2636 0.3684 0.8295 10.093 2.2215 5 ours 0.2636 0.3492 1.0297 1.6344 2.0912	N SetUp s=0.01 s=0.2 s=0.2 s=0.2 s=0.2 2 Limmin 0.2654 0.5665 0.6481 3.3806 2.93 0.2378 3 ours 0.2728 0.4416 0.3726 2.0912 3.229 0.2378 4 ours 0.2636 0.588 0.8295 1.6993 2.9212 0.2583 5 ours 0.2641 0.4972 1.0297 1.5444 2.012 0.2833	N SetUp s=0.01 s=0.2 s=0.2 s=0.2 s=0.1 s=0.01 s=0.1 2 icrash ^a 0.6544 0.5656 0.6481 33006 2.93 0.2378 0.57777 3 ours 0.2728 0.4416 0.3726 2.0912 3.229 0.2618 0.5487 4 ours 0.2636 0.388 0.8295 1.693 2.9215 0.2638 0.2830 5 ours 0.2641 0.4727 1.0277 1.0244 2.0912 0.2238 0.2033 0.2238 0.2438 0.2238	N SetUp s = 0.01 s = 0.1 s = 0.2 s = 0.5 s = 1.1 s = 0.01 s = 0.1 s = 0.2 2 Combi 0.2554 0.5665 0.6481 3.3006 2.33 0.378 0.5777 1.5409 3 ours 0.2728 0.4416 0.3726 2.0912 3.229 0.2618 0.5487 1.1899 4 ours 0.2636 0.338 0.2595 1.0939 2.2215 0.2583 0.2803 0.1498 5 ours 0.2641 0.4972 1.0297 1.0244 2.0912 0.2583 0.2803 0.5584	$ \hline N = 1001 + $

NI	Cabura			stapler				hi	and-clappin	g	
IN	Setup	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1
2	[Crocca-3, Del Bare 2016]	3.7404	4.9421	3.8708	3.479	4.478	3.3215	4.7464	3.7643	3.8144	4.8355
3	ours	3.5635	4.5142	3.9549	3.6192	5.2086	3.5635	4.5142	3.9549	3.6192	5.2086
4	ours	2.458	3,588	4.3245	3.6958	4.7859	4.8498	3.658	3.7566	5.3835	4.9137
5	ours	3.2887	3.3599	3.2826	3.2742	5.5281	3.6248	5.0005	4.8891	5.4968	6.1206
10	ours	3.3701	3.5617	4.0655	4.1534	5.4883	3.6174	4.3315	4.6524	5.6151	6.2386
	2 3 4 5	2 Interaction because 3 ours 4 ours 5 ours	2 Dec ALM S = 0.01 3 Ours 3.7404 4 Ours 2.458 5 Ours 3.2887	Continue s=0.01 s=0.1 2 Baseding 3.7404 4.9421 3 ours 3.5635 4.5142 4 ours 2.458 3.588 5 ours 3.2887 3.3599	N Setup (s = 0.01) s = 0.1 s = 0.2 2 Setup (s = 0.01) 3.7404 4.9421 3.8708 3 Gurs 3.5635 4.5142 3.9549 4 Gurs 3.2458 3.588 4.3245 5 Gurs 3.2887 3.3599 3.2826	N Setup s=0.01 s=0.1 s=0.2 s=0.5 2 besta ⁵¹ 3.7404 4.9421 3.8708 3.4794 3 ours 3.5635 4.5142 3.9549 3.6192 4 ours 2.458 3.588 4.3245 3.6958 5 ours 3.2887 3.3599 3.2826 3.2742	N Setup s=0.01 s=0.1 s=0.2 s=0.5 s=1 2 Umation Setup 3.7404 4.9421 3.8708 3.479 4.478 3 ours 3.5635 4.5142 3.9549 3.6192 5.2086 4 ours 2.458 3.5848 4.3245 3.0584 4.3245 5 ours 3.2887 3.3599 3.2826 3.2742 5.5281	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

1. Sample two random microphones m_1, m_2

2. Optimize eq. (8), using the *standard* pre-conditioning of IL1C

 $m_{\rm 3}$ will be initialized using the standard approach IL1C

4. Update the AIRs for all solved microphones.

until all N ones are covered

(Left) Average Peak Position Mismatch (APPM) error metric for IL1C [Crocco & Del Bue 2016] when N=2,3,4,5,10. Synthetic source noise are denoted in italic, while bold italic refers to the natural source signal considered in this study. For each source signal, we provide an histogram visualization to better perceive the variability of the error metrics: the range of variability of each data bar is normalized within each different source. A better performance corresponds to a lower APPM value or, equivalently, to a lower bar. The value s quantifies the impact of the additive Gaussian noise on the registered signal: we span the case s=0.01 (easier) to s=1 (harder), while transitioning on the intermediate cases s=0.1,0.2 and s=0.5. (Right) The same experimental validation is reported for the Average Percentage of Unmatched Peaks (APUP) error metric

Method	N	Setup			white noise					pink noise		
wiethou		Setup	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1
IL1C	2	[Crocco & Del Bas 20%]	0	0.0014	0.0114	0.0557	0.2	0.7679	0.7179	0.6429	0.6	0.5964
IL1C	3	ours	0	0.0019	0.0095	0.0714	0.179	0.75	0.7238	0.6643	0.5381	0.5476
IL1C	4	ours	0	0.0043	0.0293	0.105	0.225	0.725	0.7125	0.5893	0.5125	0.5696
IL1C	5	ours	0	0.0046	0.016	0.0983	0.2514	0.74	0.6771	0.5886	0.5114	0.5057
IL1C	10	ours	0	0.0058	0.0265	0.1075	0.2367	0.7429	0.6886	0.5721	0.455	0.5086
Method	N	Setup		plastic	rustle no. 3	(bag)			plastic I	rustle no. 2	(bottle)	
Method		Setup	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1
IL1C	2	[Concos & Del Rae 2006]	0	0	0.025	0.15	0.2964	0.7393	0.75	0.7107	0.6	0.5821
IL1C	3	ours	0	0.0262	0.0095	0.1381	0.2952	0.7238	0.7405	0.6524	0.5333	0.531
11.4.0				0	0.0057	h 4057	0.0004	0.700	0.7004	0.0044	o shoel	0.5304

(iterative pre-conditioning)

(sparsity-inducing prior)

(positivity constraint)

IL1C	2	[CIOCOD & Del 844 2006]	0	0	0.025	0.15	0.2964	0.7393	0.75	0.7107	0.6	0.5821	
IL1C	3	ours	0	0.0262	0.0095	Ø.1381	0.2952	0.7238	0.7405	0.6524	0.5333	0.531	
IL1C	4	ours	0	0	0.0857	Ø.1357	0.2804	0.725	0.7036	0.6214	0.5196	0.5304	
IL1C	5	ours	0.0029	0.0071	0.0329	0.12	0.3343	0.7271	0.68	0.61	0.4743	0.4786	
IL1C	10	ours	0	0	0.0043	0.1414	0.28	0.5461	0.5411	0.5396	0.5311	0.5296	

Method	N	Setup		adu	ilt male void	æ	e dog barking							
wethod	IN	Setup	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1		
IL1C	2	[Crocco & Del Ser 2026]	0	0.0321	0.075	0.3214	0.375	0	0.0214	0.1357	0.3321	0.4464		
IL1C	3	ours	0	0.0095	0.0357	0.2833	0.3524	0	0.0286	0.1071	0.2619	0.4119		
IL1C	4	ours	0	0.0161	0.0536	0.2036	0.4143	0	0.0018	0.0946	0.3089	0.3464		
IL1C	5	ours	0	0.02	0.0757	0.1871	0.31	0	0.0286	0.0614	0.1886	0.3857		
IL1C	10	ours	0	0.0157	0.0436	0.1829	0.2986	0	0.0157	0.0529	0.1786	0.3064		
ica o	10	ours	•1	010107	010100	912020	012,700		010101	E 010020	pixroo	010		

lethod	Ν	Setup			stapler				hi	and-clappin	g	
lethoa	IN	Setup	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1
IL1C	2	(Crocca & Del Bue 2936)	0.6643	0.7036	0.6321	0.6071	0.6036	0.6964	0.6964	0.6393	0.5571	0.6143
IL1C	3	ours	0.6048	0.6429	0.5643	0.4833	0.5524	0.6048	0.6429	0.5643	0.4833	0.5524
IL1C	4	ours	0.5607	0.5714	0.5607	0.5732	0.575	0.7	0.6571	0.625	0.5929	0.5786
IL1C	5	ours	0.61	0.57	0.5529	0.4571	0.4614	0.7486	0.7229	0.6186	0.4643	0.4943
IL1C	10	ours	0.6393	0.575	0.5464	0.4243	0.4621	0.7543	0.6979	0.6421	0.4736	0.52

FUTURE DIRECTIONS

Incremental Addition of Microphones?

Ensemble Mechanisms?

- 1. Split the N microphones into pairs, generating many N=2 subproblems.
 - Solve each subproblem, generating candidate solutions
- Aggregate the AIR corresponding to the same microphone by averaging across different candidate solutions

YES! Improvements over the baseline

			APPM		
	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1
IL1C	2.2250	2.0199	2.2215	4.1515	4.1766
Ensemble (us)	1.6982	1.8995	2.2643	4.4532	4.4647
			APUP		
	a = 0.01	a = 0.1	0.0.2		-1
	s = 0.01	s = 0.1	s = 0.2	s = 0.5	s = 1
IL1C	s = 0.01 0.3750	s = 0.1 0.3543	s = 0.2 0.3971	s = 0.5 0.7186	s = 1 0.7214

thus obtaining the AIRs for $m_1 m_2$. **3.** Add a third microphone m_3 : optimize IL1C again but now single microphone, lacking of any changing the preconditioning. The AIRs of m_1 and m_2 will be the ones obtained at the previous stage, while the AIR of improvement over the baseline where all microphones are considered in a joint manner. 5. Keep adding microphones, following the same procedure,

NO. It leads to "overfit" the