

End-to-end Deep Learning Methods for Automated Damage Detection in Extreme Events at Various Scales

Yongsheng Bai^{1,2} Halil Sezen² Alper Yilmaz¹

¹ Photogrammetric Computer Vision Lab, The Ohio State University, Columbus, USA

² Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, USA

25th International Conference on Pattern Recognition

Scene level (scale) problem in cracking detection:

> Data preparation for training:

Methodology:

2. Mask R-CNN with Path Aggregation Network (PANet) and Spatial Attention Mechanisms (Mask R-CNN + A-PANet): (a) FPN backbone. (b) Bottom-up path augmentation. (c) Adaptive feature pooling. (d) Box branch. (e) Fully connected fusion. Note that we omit channel dimension of feature maps in (a) and (b) for brevity [27]

3. Mask R-CNN with High-resolution Network (Mask R-CNN + HRNet): There are four stages. The first stage consists of high-resolution convolutions. The second (third, fourth) stage repeats two-resolution (three-resolution, four-resolution) blocks [30]

4. Evaluation of the Mask R-CNNs with validation data:

Methods	AP	AP50	AP75	APs	AP _M	AP_L
Mask R-CNN	21.7	54.9	16.6	28.6	41.2	23.1
Mask R-CNN + A-PANet	46.9	78.5	48.9	70.0	53.9	41.5
Mask R-CNN + HRNet	59.3	86.7	63.6	80.0	58.4	62.2

Implementation

Some correct predictions of U-Net and Mask R-CNN + A-PANet at object level

Conclusion

- 1. With appropriate training data, end-to-end networks like the latest Mask R-CNN which can detect cracks at various scale precisely are possible.
- 2. We still need to collect more data for counteracting the imbalance among training data and finding a way to speed up the prediction on high-resolution images.

74.0% **63.6%** 88.3%

3. We plan to try other networks in future.

Mask R-CNN + HRNet