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Methodology LiDAR Projection Error Generation

H E)ur methodology consists of four components: H i * Rotation Error Range: + 2 degrees
A fusion of LiDAR and cameras have been widely used in many . S!:ereo Ma‘ECh".]g - R(rory,r) [hot, tZ]T * Translation Error Range: + 20 cm
robotics applications such as classification, segmentation, . LiDAR Projection I O | “ * With a uniform distribution
object detection, and autonomous driving. It is essential that . Artificial Error Generation ~ _ * Encoded in a vector-
the LiDAR sensor can measure distances accurately, which is a ‘ Deep Neural Network H fu 0 c, 0 i
good complement to the cameras. Hence, calibrating sensors —— e ————————— P=1lo e=|r,r,71,a4, b, c]
before deployment is a mandatory step. The main purpose of H Stereo Matchlng F - fV €y q * Could be transformed to calibration matrix:
this research work is to build a deep neural network that is O 0 1 0 .
capable of automatically finding the geometric transformation i | T, = R(ry, 1y, 1) la,b,c]
between LiDAR and cameras. The results show that our model H H [u,v,1]7 = PT|x, v, Z, 117 ' 0 1
manages to find the transformations from randomly sampled H where R is rotation matrix, t is translation errors, T is i " Embedded into LiDAR projection:
artificial errors. Besides, our work is open-sourced for the transformation matrix, P is projection matrix.
community to fully utilize the advances of the methodology for Semi Global Block Matching H “ W 11T = PT.TLx, y, 2117
developing more the approach, initiating collaboration, and ML methods based on RGB images H H * Transform LiDAR point cloud to the origin of the camera ' '
innovation in the topic. I depth = _BJ * Project the transformed point cloud to a 2D frame i e, v 1" = PTTT L, y, 2,117
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Feature extraction networks for stereo depth and LiDAR depth respectively 5 s * -0.04°, 0.16°, - 0.0¢° for roll, pitch, yaw.
Output features are concatenated in channels L g | /L\ : * 1.20 cm, 2.77 cm, and -1.10 cm for X, Y, and Z axis
° . 8 51
Global regression network for the features from both sensors 10 iR i i it i1 221 n * Standard deviations:
[ ] . . . .
Spatial pyramid pooling layer to unify the length of the output features H AL A A 2o * 0.33°, 0.55°, and 0.47° for roll, pitch, yaw H
[ ] . . . . . .
Two sets of output layers for rotation error estimation and translation error estimation. I R L S N 2] R N * 6.83cm, 7.57 cm, 5.47 cm for X, Y, and Z axis
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Conclusions & Future Perspectives

Proposed model can be used for auto-calibration, it shrinks ~° Open sourced at: https:/github.com/simonwus3/NetCalib-
the error ranges Lidar-Camera-Auto-calibration

Model can be adapted for arbitrary input dimensions * Improve the quality of input depths could lead to a better
performance
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