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Motivation:

» Video action recognition Is a fundamental yet
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» It is still unclear how to capture temporal information Fig. 2: The overview architecture of Multi-range Feature Interchange Network for video action recognition.
with complex evolution on multiple ranges using an Following [1], T sampled frames are obtained from a video as the input of the network. 2D ResNet-50 is utilized as the backbone,
efficient and effective way. and all original bottleneck blocks are replaced by the proposed STI blocks. We also insert two GRI modules between middle and

top STI blocks. The global temporal pooling is applied to average action predictions for all of the sampled frames.
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» Channel-wise Temporal Interchange (CTI) Module |
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« The temporal difference can be obtained by calculating the difference between the X120 Conv | | “
» Feature Interchange: the features from the colored features of two consecutive frames. P Tempmla;f:;:?“*’ —
regions bi-directionally shift in the feature map of video HT —Conv, @YY te[LT-1] | " laro |
models. . Temporal interchange operation. L) | lrt ) l"m ]
L H' [h,w,c]=H"[h,w,c], te[LT-1],ce[0,C/8r], el Gomen
Contribution: H . [h,w,c]=H""[h,w,c], te[2T],ce[C/8r,C/4r], -<i><J 0
» Perform channel-wise temporal interchange (CTI) along H: [h,w,c]=H"[h,w,c], te[l, T],ce[C/4r,C/r]. (et ) H )
the temporal dimension to effectively encode short- » Channel-wise Temporal Interchange (CTI) Module | |
range motion features. » Transform from the features in a regular feature map to the state of nodes in a non- TTM[ Imhﬂ[ige
» Construct graph-based regional interchange (GRI) grid graph. (HET ) [ HL )
module to learn efficiently long-range dependencies =[Conv,,,, ®® (X)I', W, eR™, 1(: — |
using graph convolution. Vi =W, *® (X), V, e RV, mleH _—
> Propose a novel multi-range feature interchange (MFI)  Graph Convolutional Operation. The nodes propagate their state with each other. XiebConv|
network to Integrate the proposed two modules. V., =ReLU(F(V,, A, W, )+V,) (J]'; H, W, C/r
Achieves competitive results by using very limited

* Reverse the output into the regular feature maps to be compatible with CNN models. _
Fig. 3: The architecture of the channel-
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Y., =0 (W *V_ ) wise temporal interchange module.
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