

MFI: Multi-range Feature Interchange for Video Action Recognition

Sikai Bai, Qi Wang and Xuelong Li Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University

Introduction

Motivation:

 \succ Video action recognition is a fundamental yet challenging task in the field of computer vision.

T Frames

Short-range features motion and long-range dependencies are two complementary and vital cues for action recognition in videos.

 \succ It is still unclear how to capture temporal information with complex evolution on multiple ranges using an efficient and effective way.

> Feature interchange: the features from the colored regions bi-directionally shift in the feature map of video models.

Contribution:

- Perform channel-wise temporal interchange (CTI) along the temporal dimension to effectively encode shortrange motion features.
- ➢ Construct graph-based regional interchange (GRI) module to learn efficiently long-range dependencies using graph convolution.
- > Propose a novel multi-range feature interchange (MFI) network to integrate the proposed two modules.

Fig. 2: The overview architecture of Multi-range Feature Interchange Network for video action recognition.

Following [1], T sampled frames are obtained from a video as the input of the network. 2D ResNet-50 is utilized as the backbone, and all original bottleneck blocks are replaced by the proposed STI blocks. We also insert two GRI modules between middle and top STI blocks. The global temporal pooling is applied to average action predictions for all of the sampled frames.

Architecture Details

- Channel-wise Temporal Interchange (CTI) Module
 - The temporal difference can be obtained by calculating the difference between the features of two consecutive frames.

 $H_{c}^{T} = Conv_{trans} \otimes Y_{c}^{t+1} - Y_{c}^{t}, \quad t \in [1, T-1].$

Temporal interchange operation. •

> $H_{ic}^{t}[h, w, c] = H^{t+1}[h, w, c], \quad t \in [1, T-1], c \in [0, C/8r],$ $H_{ic}^{t}[h, w, c] = H^{t-1}[h, w, c], \quad t \in [2, T], c \in [C/8r, C/4r],$

 $H_{ic}^{t}[h, w, c] = H^{t}[h, w, c], \quad t \in [1, T], c \in [C/4r, C/r].$

- Channel-wise Temporal Interchange (CTI) Module
 - Transform from the features in a regular feature map to the state of nodes in a nongrid graph.

 $W_t = [Conv_{trans} \otimes \Phi_r(X)]^T, \quad W_t \in \mathbb{R}^{N \times L},$ $V_t = W_t * \Phi_r(X), \qquad V_t \in \mathbb{R}^{N \times C}.$

Graph Convolutional Operation. The nodes propagate their state with each other. \bullet

 $V_{out} = Re LU(F(V_t, A_g, W_g) + V_t)$

Achieves competitive results by using very limited computing cost.

References

[1] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool, "Temporal segment networks: Towards good practices for deep action recognition," in ECCV, 2016, pp. 20–36.

[2] Y. Yuan, D. Wang, and Q. Wang, "Memory-augmented temporal dynamic learning for action recognition," arXiv preprint arXiv:1904.13080, 2019.

[3] J. Lin, C. Gan, and S. Han, "Tsm: Temporal shift module for efficient video understanding," in CVPR, 2019, pp. 7083–7093.

[4] M. Xu, C. Zhao, D. S. Rojas, A. Thabet, and B. Ghanem, "G-tad: Subgraph localization for temporal action detection," in CVPR, 2020, pp. 10 156-10 165.

[5] W. Zhang, J. Cen, and H. Zheng, "Temporal inception architecture for action recognition with convolutional neural networks," in ICPR, 2018, pp. 3216–3221.

[6] B. Zhou, A. Andonian, A. Oliva, and A. Torralba, "Temporal relational reasoning in videos," in ECCV, 2018, pp. 803–818. [7] M. Zolfaghari, K. Singh, and T. Brox, "Eco: Efficient convolutional network for online video understanding," in ECCV, 2018, pp. 695–712.

[8] K. Hara, H. Kataoka, and Y. Satoh, "Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet?" in CVPR, 2018, pp. 6546-6555.

Reverse the output into the regular feature maps to be compatible with CNN models. \bullet

 $Y_{inv} = \varphi_r (W_t^T * V_{out})$

Fig. 3: The architecture of the channelwise temporal interchange module.

Experiments

Benchmark Comparison

Table 1: 7	Table 2: The comparison on UCF101 and HMDB51.								
Method	Backbone	#Frames	FLOPs	Val-Top1 (%)	Val-Top5 (%)	Method	#Frames	UCF101	HMDB51
TSN	BNInception	8	16G	19.5	-	Two-stream CNN	16+16	88.0	59.4
TSN	ResNet-50	8	33G	19.7	46.6	Two-stream TSN	8+8	94.2	69.6
MultiScale TRN	BNInception	8	16G	34.4	-	StNet	7	93.5	-
TSM	ResNet-50	8	33G	43.4	73.2	TSM	8	94.5	70.7
TSM	ResNet-50	16	33G	44.8	74.5	ECO	92	93.6	68.0
ECO_{8f}	BNInception+3D ResNet18	8	32G	39.6	-	STC-ReNeXt101	16	93.7	70.5
ECO_{16f}	BNInception+3D ResNet18	16	64G	41.4	-	ARTNet	16	94.3	70.9
I3D	3D ResNet50	32×2	$153G \times 2$	41.6	72.2	I3D-RGB	64	95.4	74.8
Non-Local-I3D	3D ResNet50	32×2	$168G \times 2$	44.4	76.0	Two-steam I3D	64+64	98.0	80.7
MFI(Ours)	ResNet-50	8	33.6G	43.9	73.9	MFI(Ours)	8	94.9	71.9
MFI(Ours)	ResNet-50	16	67.2G	45.5	76.0	MFI(Ours)	16	95.6	73.3

Ablation Study

Table 3: Efficiency Analysis of different methods.

Model	#Frames	FLOPs	Param.	Acc.(%)
TSN	8	33G	24.3M	19.7
1.51	16	66G	24.3M	19.9
ECO	16	64G	47.5M	41.4
I3D	32	306G	28.0M	41.6
тем	8	33G	24.3M	43.4
1.5101	16	36G	24.3M	44.8
MEI	8	33.6G	24.6M	43.9
1411.1	16	67.2G	24.6M	45.5

Table 4: Components effectiveness of the proposed method.

Method	Val-Top1 (%)	Val-Top5 (%)
baseline(TSN)	19.7	46.6
GRI	38.2	67.2
OTT	40.0	71.0

WeChat

name: Sikai Bai (白思开) Email: whitesk1973@gmail.com

Moving something away from something

1. Moving something away from something (0.998) 2. Moving something across a surface without it falling down (0.001)

Moving something closer to something

1. Moving something closer to something (0.907) 2. Moving something and something closer to each other(0.071)

CTI 42.8 71.3 MFI 73.9 43.9

Pouring something into something

Pretending to put something into something

1. Pretending to put something into something (0.731) 2. Pretending to scoop something up with something (0.140)

Fig. 4: Some prediction examples on Something-Something V1. The top 2 predictions with green text indicating a correct prediction.

