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Introduction
• Deep networks achieves a great success under the 

setting of supervised.
• Human possess the ability to continually grow the 

knowledge throughout the lifespan by solving 
different tasks.

• However, deep network fails to solve the old tasks 
when a new task is learned.

• This phenomenon is referred as catastrophic 
forgetting, where the classifier forgets the 
knowledge previously established after training on 
new data.

• The proposed approaches can be mainly 
categorized into weight consolidation, architecture 
expansion and memory rehearsal.

• Weight consolidation based methods often suffer 
from insufficient learning capacity as the flexibility 
is restricted by the regularization imposed for 
consolidating the old knowledge.

• Architecture expansion approaches are difficult to 
scale up in general when new coming tasks 
increase dramatically.

• Rehearsal based approaches store past examples 
which requires extra memory usage.

• Therefore, these prior works do not meet the 
requirement of lightweight continuous learning 
scenario (LCL).

• Inspired from SAAK [1], we proposed regularized 
subspace approximation classification (RSAC) for 
LCL. RSAC is a feedforward network as SAAK.
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Figure 1. Regularized Subspace Approximation 
Classifier(RSAC) architecture

• There are two modules in RSAC, feature reduction 
module and classifier module.

• 𝑥 is the raw image, 𝜇𝑐 is the mean of images and 
Σ𝑐 is the covariance, which belongs to class 𝑐.

• The equations is defined as,

where 𝑁𝑐 is the number of data belongs to class 𝑐,            
and Λ𝑐 is a diagonal matrix with eigenvalues of
class 𝑐 as its entry.

• Corresponding to the entry of  Λ𝑐, 𝑄𝑐 is a 𝑑 × 𝑑
orthonormal matrix composed of eigenvectors. 

• We leverage KLT transform for feature reduction 
in lightweight continuous learning.
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• The selecting of top k largest eigenvalues in Λ𝑐 is 
evaluated with the power threshold as

• Then, we project the input image 𝑥 on the top 
𝑘 eigenvectors of 𝑄𝑐, which is represented as ෠𝑄𝑐.

• In classifier module, it computes the latent 
representation f(x) through the maximum a 
posteriori in log scale to obtain final prediction.

• However, computing the inverse of covariance in 
latent representation is an ill-defined problem, we 
proposed to add a regularization on the covariance 
in latent representation.
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Figure 2. Class incremental scenario

Figure 3. Ablation study (a) power threshold 
and (b) data incremental
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