RSAC: Regularized Subspace Approximation Classifier for Lightweight Continuous Learning

Chih-Hsing Ho, Shang-Ho (Lawrence) Tsai National Chiao Tung University

CaSIC LAB

Introduction

- Deep networks achieves a great success under the setting of supervised.
- Human possess the ability to continually grow the knowledge throughout the lifespan by solving different tasks.
- However, deep network fails to solve the old tasks when a new task is learned.
- This phenomenon is referred as catastrophic forgetting, where the classifier forgets the knowledge previously established after training on new data.
- The proposed approaches can be mainly categorized into weight consolidation, architecture expansion and memory rehearsal.
- Weight consolidation based methods often suffer from insufficient learning capacity as the flexibility is restricted by the regularization imposed for consolidating the old knowledge.
- Architecture expansion approaches are difficult to scale up in general when new coming tasks increase dramatically.
- Rehearsal based approaches store past examples which requires extra memory usage.
- Therefore, these prior works do not meet the requirement of lightweight continuous learning scenario (LCL).
- Inspired from SAAK [1], we proposed regularized subspace approximation classification (RSAC) for LCL. RSAC is a feedforward network as SAAK.

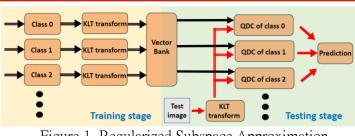
Proposed method

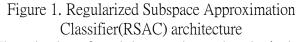
- There are two modules in RSAC, feature reduction module and classifier module.
- *x* is the raw image, μ_c is the mean of images and Σ_c is the covariance, which belongs to class *c*.
- The equations is defined as,

$$\mu_{c} = \frac{1}{N_{c}} \sum_{j=1}^{N_{c}} x_{j}, \Sigma_{c} = \frac{1}{N_{c}} \sum_{j=1}^{N_{c}} (x_{j} - \mu_{c}) (x_{j} - \mu_{c})^{T}$$
$$= Q_{c} \Lambda_{c} Q_{c}^{T}$$

where N_c is the number of data belongs to class c, and Λ_c is a diagonal matrix with eigenvalues of class c as its entry.

- Corresponding to the entry of Λ_c, Q_c is a d × d orthonormal matrix composed of eigenvectors.
- We leverage KLT transform for feature reduction in lightweight continuous learning.





• The selecting of top k largest eigenvalues in Λ_c is evaluated with the power threshold as

 $\arg\max_{c}\ln\left(\mathbb{P}_{Y|X}(c|f(x))\right)$

$$= \arg \max_{c} \ln \left(\mathsf{P}_{X|Y}(f(x)|c) \right) + \ln(\mathsf{P}_{Y}(c))$$

- Then, we project the input image x on the top k eigenvectors of Q_c , which is represented as \hat{Q}_c . $f(x) = \hat{Q}_c^T x$
- In classifier module, it computes the latent representation f(x) through the maximum a posteriori in log scale to obtain final prediction.

$$\frac{\sum_{j=1}^k \sigma_c^j}{\sum_{j=1}^d \sigma_c^j} \ge t$$

• However, computing the inverse of covariance in latent representation is an ill-defined problem, we proposed to add a regularization on the covariance in latent representation.

$$\hat{\Sigma}_{c} = Cov(f(x)) = \hat{Q}_{c}^{T}Cov(x)\hat{Q}_{c}$$
$$= \hat{Q}_{c}^{T}\Sigma_{c}\hat{Q}_{c} = \hat{Q}_{c}^{T}Q_{c}\Lambda_{c}Q_{c}^{T}\hat{Q}_{c} = \hat{\Lambda}_{c}$$

$$\hat{\Sigma}'_c = \hat{\Sigma}_c + \alpha * I = \hat{\Lambda}_c + \alpha * I$$

	Experiments										
										4 13	
	Methods	Methods Mnist KMnist Fashion M					Mnis		ts (Training Time KMnist	e (sec)) Fashion Mnist	
							315.99±2.25				
	DGR [28]	90.44±1.56		69.25 ± 2.94		74.83 ± 5.50			748.75 ± 51.17	760.21±21.72	
	DGR+distill [20], [28]	92.31±0.74		64.42 ± 1.12		76.03±4.12		12.79	819.52 ± 14.52	800.81±3.69	
	EWC [21]	20.45±1.15		19.54 ± 0.12		19.97±0.02 19.97±0.03		11.04	719.89 ± 21.95	697.24 ± 53.39	
	Online EWC [61]			19.54 ± 0.12			371.87±12.35		665.04 ± 3.40	692.49 ± 29.20	
	iCaRL [13]			70.83±2.78		±0.79	200.16±9.83 198.40±9.09		468.38 ± 4.98	466.60 ± 11.09	
	LwF [20]								495.62 ± 31.48	499.49 ± 8.77	
	RtF [46]								639.66 ± 25.56	678.42±34.04	
	SI [22]			19.53±0.09		± 0.02	194.16±87.6 > 3600		503.72±5.15	498.37±3.28	
	CNDPM [62]	93.54±0.13 / 95.21		74.35±1.4 76.25		2±2.1	> 3600		> 3600 > 3000	> 3600	
	Saak [32]					73.51			,	> 3000	
	Ours	95.59		77.35	80	80.32			5.72	5.48	
Т	Figure 2. Class incremental scenario										
	Power threshold t										
		k	acc	k	acc	k	acc	90-	4		
	0.8	31	67.75		61.30	26	64.90	80 -	f .		
	0.9	68	93.22	126	76.16	77	73.98	# [®] 1			
	0.95	121	95.41	211	77.13	156	79.74	Accuracy rate	[
	0.96	141	95.43	243	76.87	185	80.25	ACCI	4		
	0.97	168	95.43		74.84	224	73.56	60 -	1		
	0.98	206	91.66		75.09	278	73.95		t	Minist Khinist	
								50	1	- Fashion Mnist	
	Best 150 95.59 192 77.35 183 80.32										
	Figure 3. Ablation study (a) power threshold										
	and (b) data incremental										
	Reference										
	[1] C. Kuo and Yueru Chen. On data-driven saak transform. Journal of Visual										

[1] C. Kuo and Yueru Chen. On data-driven saak transform.Journal of Visual Communication and Image Representation, 50, 10 2017.