Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction

Jiexia Ye, Jujuan Zhao, Kejiang Ye, Chengzhong Xu
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
State Key Lab of IOTSC, University of Macau

1 Background

Previous Work

\[f(X) \]

Our Design

\[f(X, G) \]

2 Model

Multi-GCGRU

\[\mathbf{X} \rightarrow \mathbf{G} \mathbf{S} = \mathbf{V}, \mathbf{E}_S, \mathbf{A}_S \]

\[\mathbf{X}_t \rightarrow \mathbf{G}_I = \mathbf{V}, \mathbf{E}_I, \mathbf{A}_I \]

\[\mathbf{X}_t \rightarrow \mathbf{G}_T = \mathbf{V}, \mathbf{E}_T, \mathbf{A}_T \]

Stock Graphs
3 Experiments Results

![Graph Convolutional Layer](image)

Graph Convolutional Layer:

\[H^{(l+1)} = \rho \left(\sum_{k=0}^{K-1} \theta_k L_k^k \right) H^{(l)} W^{(l)} \]

Multi-Graph Convolutional Layer:

\[H^{(l+1)} = \rho \left(\sum_{k=0}^{K-1} \theta_k \left(\theta_S t^k_S + \theta_I t^k_I \right) \right) H^{(l)} W^{(l)} \]

Dynamic Graph Convolutional Layer:

\[H^{(l+1)} = \rho \left(\tilde{L} H^{(l)} W^{(l)} \right) \]

![GRU](image)

GRU

\[r_t = \sigma \left([H_{t-1}, X_t, X_t^{GCN}] \cdot W_r + b_r \right) \]

\[u_t = \sigma \left([H_{t-1}, X_t, X_t^{GCN}] \cdot W_u + b_u \right) \]

\[\tilde{H}_t = \tanh \left([r_t \odot H_{t-1}, X_t, X_t^{GCN}] \cdot W_h + b_h \right) \]

\[H_t = u_t \odot H_{t-1} + \left(1 - u_t \right) \odot \tilde{H}_t \]

TABLE II

The Experimental Results

<table>
<thead>
<tr>
<th>Input Feature</th>
<th>Models</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
<th>MCC</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
<th>MCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical Records</td>
<td>LR</td>
<td>0.5145</td>
<td>0.9746</td>
<td>0.5133</td>
<td>0.6724</td>
<td>0.0228</td>
<td>0.5149</td>
<td>0.9723</td>
<td>0.5148</td>
<td>0.6732</td>
<td>0.0117</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>0.5197</td>
<td>0.9498</td>
<td>0.5165</td>
<td>0.6691</td>
<td>0.0412</td>
<td>0.5253</td>
<td>0.9662</td>
<td>0.5202</td>
<td>0.6763</td>
<td>0.0636</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>0.5375</td>
<td>0.9298</td>
<td>0.5271</td>
<td>0.6728</td>
<td>0.0957</td>
<td>0.5433</td>
<td>0.9900</td>
<td>0.5294</td>
<td>0.6899</td>
<td>0.1587</td>
</tr>
<tr>
<td></td>
<td>ANN</td>
<td>0.5191</td>
<td>0.9724</td>
<td>0.5158</td>
<td>0.6740</td>
<td>0.0463</td>
<td>0.5202</td>
<td>0.9900</td>
<td>0.5170</td>
<td>0.6792</td>
<td>0.0576</td>
</tr>
<tr>
<td></td>
<td>LSTM</td>
<td>0.5435</td>
<td>0.9756</td>
<td>0.5291</td>
<td>0.6861</td>
<td>0.1443</td>
<td>0.5461</td>
<td>0.9662</td>
<td>0.5318</td>
<td>0.6860</td>
<td>0.1384</td>
</tr>
<tr>
<td>Historical Records & Corporation Relationships</td>
<td>GCGRU-S</td>
<td>0.5472</td>
<td>0.9609</td>
<td>0.5317</td>
<td>0.6845</td>
<td>0.1421</td>
<td>0.5463</td>
<td>0.9675</td>
<td>0.5423</td>
<td>0.6950</td>
<td>0.0717</td>
</tr>
<tr>
<td></td>
<td>GCGRU-I</td>
<td>0.5505</td>
<td>0.9321</td>
<td>0.5346</td>
<td>0.6795</td>
<td>0.1338</td>
<td>0.5521</td>
<td>0.9635</td>
<td>0.5458</td>
<td>0.6969</td>
<td>0.0938</td>
</tr>
<tr>
<td></td>
<td>GCGRU-T</td>
<td>0.5598</td>
<td>0.9561</td>
<td>0.5392</td>
<td>0.6895</td>
<td>0.1739</td>
<td>0.5678</td>
<td>0.9814</td>
<td>0.5540</td>
<td>0.7082</td>
<td>0.1655</td>
</tr>
<tr>
<td></td>
<td>GCGRU-D</td>
<td>0.5628</td>
<td>0.9512</td>
<td>0.5412</td>
<td>0.6899</td>
<td>0.1782</td>
<td>0.5751</td>
<td>0.9837</td>
<td>0.5581</td>
<td>0.7122</td>
<td>0.1916</td>
</tr>
<tr>
<td></td>
<td>Multi-GCGCRU</td>
<td>0.5754</td>
<td>0.9603</td>
<td>0.5484</td>
<td>0.6981</td>
<td>0.2171</td>
<td>0.5885</td>
<td>0.9894</td>
<td>0.5658</td>
<td>0.7199</td>
<td>0.2377</td>
</tr>
</tbody>
</table>

4 Conclusion

1. We take cross-effect among stocks into consideration, instead of historical observations of only single stock.
2. We novelly design industry/topicality graph to represent cross-effect and also explore a data-driven matrix to get rid of expert knowledge.
3. We utilize graph convolution network to capture cross-effect and GRU to capture temporal dependency in stock price.
4. Our Multi-GCGCRU is flexible to consider more valuable pre-defined relationships.