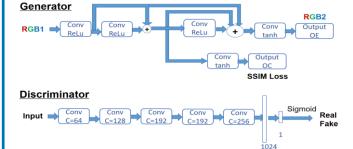


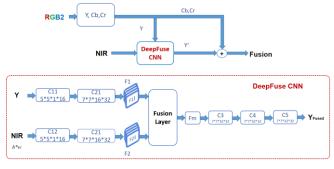
Deep Fusion of RGB and NIR Paired Images Using Convolutional Neural Networks

Lin Mei and Cheolkon Jung School of Electronic Engineering, Xidian University, China

Proposed Method



1) DenoisingNet by DnCNN [1]:


Residual learning & Batch normalization RGB=Noisy RGB-Residual image

2) EnhancingNet by MCRN [2]:

- Generator: Consist of 5 layers in training and 4 layers in testing.
- **Discriminator:** Consist of 5 convolutional layers and 2 fully connected layers.

3) FusingNet by DeepFuse [3]:

Input \rightarrow Feature extraction \rightarrow Fusion \rightarrow Reconstruction.

Experimental Results

(a) Input RGB, (b) Input NIR, (c) BM3D, (d) WLS [4], (e) LD [5], (f) DF [6], (g) DFE [7], (h) DEF [8].

TABLE I
BIOE COMPARISON AMONG DIFFERENT FUSION METHODS.

	DIA	1111.0		- D-D	DEE	DDD
Method	BM3D	WLS	LD	DF	DFE	DEF
bowls	29.996	26.645	27.248	27.325	26.768	26.591
teapot	29.452	27.963	28.812	26.132	28.481	25.903

Conclusions

We propose deep fusion of RGB and NIR paired images. The proposed method consists of three subnetworks: DenoisingNet, EnhancingNet, and FusingNet (DEF). The proposed method removes noise while preserving details and recovering color.

References

- [1] Zhang et al., "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising," IEEE TIP, 2016.
- [2] Liu and Jung, "Multiple connected residual network for image enhancement on smartphones," Proc. ECCVW 2018.
- [3] Prabhakar et al, "Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs," Proc. ICCV 2017.
- [4] Zhuo et al., "Enhancing low light images using near infrared flash images," Proc. ICIP 2010.
- [5] Son and Zhang, "Layer-based approach for image pair fusion," IEEE TIP, 2016.
- [6] DF: DenoisingNet + FusingNet
- [7] DFE: DenoisingNet + FusingNet + EnhancingNet
- [8] DEF: DenoisingNet + EnhancingNet + FusingNet