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a Introduction )

Recent deep learning methods generally rely on a large amount
of labeled data, which is not always available and often expensive
to acquire. To circumvent this issue, enormous efforts have been
made, aiming at leveraging unlabeled data to improve the
generalization performance. This line of research includes recent
advances in transfer learning, domain adaptation (DA), semi-
supervised and self-supervised learning.

In self-supervised learning, the model receives a supervision
signal from an auxiliary task (also known as pretext task) without
resorting to human annotations. The goal of self-supervised
learning is to learn a useful feature representation for downstream
tasks (such as image classification). Image rotation prediction has
been proven to be a simple yet effective pretext task and has been
applied to self-supervised DA which reaches the state-of-the-art.

Recent advance in semi-supervised learning exploits the
consistency with respect to data augmentation, achieving
promising results on several benchmarks. The main idea is to
ensure the predictions to be consistent before and after a
perturbation/transformation of the input.

In this paper, we incorporate simultaneously the consistency
loss to the self-supervised domain adaptation. Specifically, we
overload the data augmentation operation, such as image rotation,
to bridge self-supervised learning and consistency learning.
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Self-supervised DA revisited:
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Self-supervised DA with Consistency Training:

We explicitly relate the representation of the rotated image to the
label of the main task by maximizing the mutual information:
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Lc(Be,Om): KL Consistency loss Le(ge7 Om): Entropy Minimization loss
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Experiments
PACS (ResNet-18)

Method Art. Cartoon Sketch  Photo Avg.
SRC 74.7 72.4 60.1 92.9 150
Dial 87.3 85.5 66.8 97.0 84.2

DDiscovery  87.7 86.9 69.6 97.0 85.3
CDAN 85.7 88.1 73.1 97.2 86.0
CDAN+E 87.4 89.4 75.3 97.8 87.5
JiGen 84.9 81.1 79.1 97.9 85.7

Jigsaw 84.9 83.9 69.0 93.9 82.9
Rot 88.7 86.4 74.9 98.0 87.0
Ours 90.3 87.4 751 97.9 87.7

Office-31 (ResNet-50)

Method AW Do W WD A= D D= A WA  Avg

ResNet-30  68.4£02  96.7=0.1 99.3x0.1 68902 625£03 60.7£03 7o
DAN 80.5£04 97.1£02  99.6x0.1 78.6£0.2 63.6+£03 628£02 804
RTN 845402 96.8+0.1 99.41+0.1 77.5+£03 66.2+02 64.8+03 81.6
DANN 820404 969402  99.1£0.1 79.7404 682404 674+05 822
ADDA 862405 962+03 984403 778+£03 69.5£04 689+05 829
JAN 854403 974402 998402 847+03 686103 70.0+04 843

CDAN 93102 98202 100000 89803 70.1£04 68.0x04 86.6
CDAN+E  94.1+0.1  98.6x0.1 100.0£00 929£02 71.0£03 69.3x£03 877
Jigsaw 86.9+08 98.6+05 100000 829+1.0 629+12 61.2+07 821
Rot 00.1+0.8 98.1+03 100.0+0.0 88.6+0.7 65.1+08 650406 845
Ours 0251+02 98.7x03 100000 88.6%02 694104 67.2x03 8.l

ImageCLEF (ResNet-50)

Method I+ P P=1 I=C C—=1 C—=P P—>C Avg
ResNet-50 74803 83.9+0.1 915+03 78.0+02 655403 912403 B80.7
DAN 745404 822402 928402 863404 69.2+04 89.8+04 825
DANN 750406 86.0+03 962404 870405 7T43+£05 915+£06 850
JAN 76.8+04 88.0+£0.2 947102 895103 742103 917403 858
CDAN 76.7+£03  90.6+03 97.0+£04 90.5+04 745103 935104 871
CDAN+E  77.7£03  90.7+£02 97.7£03 913103 742202 943103 877
Rot 779408 91.640.3 956402 869406 705+£0.7 948+03 842
Ours 78.61+04 92.5+0.1 96.1£03 889402 73.9£0.7 959406 877

Office-Home (ResNet-50)

Method _ar—dl_ar—pr ar—rw c—ar d—pr_c—rw proar prod p,_ww ru—ar rw—cl ru—pr Avg
ResNet-50 349 500 58.0 374 419 462 3385 312 539 412 599 461
DAN 436 570 679 458 565 604 440 436 b‘r‘] 63.1 515 743 563
DANN 456 593 0. 470 585 609 461 437 685 632 S18 768 576
JAN 450 612 689 504 597 610 458 434 703 639 524 768 583
CDAN 490 693 745 544 660 684 556 483 759 684 554 805 638
CDAN:E 507 706 760 576 700 700 574 509 773 709 567  §L6 658
Rot 504 678 746 587 667 674 557 524 775 710 596 812 653
Ous 517 690 754 604 703 707 577 533 786 722 S99  8L7 667

N (7

J
Analysis )

Convergence
of different
methods

w

testing accuracy
9]
5 0
1 1

& &

35

[=]
N
o4
=]

T T
o 50 100 15
number of epochs

(b) CDAN

by
%%

(® SRC (2) CDAN (h) CDANSE (i) Rot ) Ours

Fig. 4. The t-SNE visualization of deep features in PACS DA task (art painting is used as target domain). (a)-(e) are feature distribution visualization
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\wuh category colors. (f)-(j) are feature distribution visualization with domain colors. Red and blue points represent samples of source and target dom:my
resectively.

4 Conclusion R
In this paper, we have shown that image rotation can be
simultaneously used for both self-supervised learning and
consistency training. By combining both, we have derived a
principled way to handle the unlabeled data from target domain and
thus have attained a new domain adaptation algorithm. The
experimental results on multiple object recognition domain
adaptation benchmarks have shown that consistency training
constantly improves self-supervised domain adaptation, reaching the
Qtate-of—the-art performance. J




