

GraphBGS: Background Subtraction via Recovery of Graph Signals

Jhony H Giraldo and Thierry Bouwmans

International Conference on Pattern Recognition 10-15 January - Milan, Italy

2/10

 $Mz_q = y_q(S$

Experimental Framework

Data Hungry Geometric Information

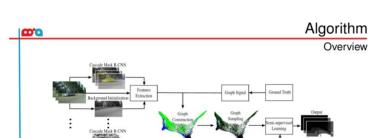
Capturing geometrical information with graphs

- Deep learning approaches require large amounts of data to avoid overfitting.
- Graphs offer tools to exploit the geometrical structure of data.
- Most deep learning techniques in background subtraction do not evaluate their performance on unseen videos.

Motivation and Problem Problem Foreground or Background? Video Output

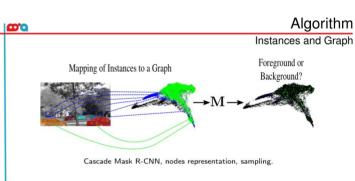
Background subtraction, moving object detection

 Background subtraction of unseen videos using semi-supervised learning techniques inspired from graph signal processing



Pipeline of our algorithm

- Our proposed algorithm consists of several components including:
 - Instance segmentation using Cascade Mask R-CNN [Cai and Vasconcelos
 - Background initialization using a temporal median filter [Piccardi (2004)]
 - Feature extraction with motion [Lucas et al. (1981)], texture [Ojala et al. (2002)], and intensity features
 - Semi-supervised learning inspired from Sobolev norm minimization



- Instance masks are mapped as nodes of a graph G.
- The representation of the nodes is given by:
 - Motion features
 - Texture features
 - Intensity features Background features
- The graph is constructed with a k-nearest neighboors with k= 30
- The graph signal associated to the problem of background subtraction is sampled

Results I PETS2006

Some visual results on CDNet2014

Challenge	FTSG	Subsense	PAWCS	WisenetMD	IUTIS-5	SemanticBGS	FgSegNet v2	BSUV-Net	GraphBGS
Bad Weather	0.8228	0.8619	0.8152	0.8616	0.8248	0.8260	0.7952	0.8713	0.9085
Baseline	0.9330	0.9503	0.9397	0.9487	0.9567	0.9604	0.6926	0.9693	0.9535
Camera Jitter	0.7513	0.8152	0.8137	0.8228	0.8332	0.8388	0.4266	0.7743	0.8826
Dynamic-B	0.8792	0.8177	0.8938	0.8376	0.8902	0.9489	0.3634	0.7967	0.8353
I-O Motion	0.7891	0.6569	0.7764	0.7264	0.7296	0.7878	0.2002	0.7499	0.5036
Low-F rate	0.6259	0.6445	0.6588	0.6404	0.7743	0.7888	0.2482	0.6797	0.6022
PTZ	0.3241	0.3476	0.4615	0.3367	0.4282	0.5673	0.3503	0.6282	0.7993
Shadow	0.8832	0.8986	0.8913	0.8984	0.9084	0.9478	0.5295	0.9233	0.9712
Thermal	0.7768	0.8171	0.8324	0.8152	0.8303	0.8219	0.6038	0.8581	0.8594
Overall	0.7539	0,7566	0.7870	0,7653	0.7923	0.8320	0.4158	0.8056	0.8128

Comparisons of average F-measure in CDNet2014. The best and second best performing method for each challenge are shown in $\frac{1}{100}$ respectively.

Summary and Future Work

- This work introduces concepts of graph signal processing in the problem of background subtraction.
- Our algorithm is composed of: a Cascade Mask R-CNN for instance segmentation, a temporal median filter for background initialization, feature extraction for node representation, a k-nearest neighbors for graph construction, and minimization of the Sobolev norm of graph signals for the semi-supervised learning algorithm.
- - A generalized theory of graph signal processing [Ji and Tay (2018)] can be used to extend the graph signals y to fuzzy concepts [El Baf et al. (2008)],
 - leading to a richer representation of moving and static objects.

 Another important direction is to study an inductive framework [Hamilton et al. (2017)] for GraphBGS, trying to get a real-time implementation of
 - GraphBGS [Cioppa et al. (2020)].
 Perhaps, concepts of graph signal processing such as active semi-supervised learning [Anis et al. (2018)] could lead in new developments in the field of computer vision and end-to-end architectures for video analysis with semi-supervised learning.

5/10