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ABSTRACT
Tensor completion and robust principal

component analysis have been widely used
in machine learning while the key problem
relies on the minimization of a tensor rank
that is very challenging. A common way
to tackle this difficulty is to approximate
the tensor rank with the `1−norm of sin-
gular values based on its Tensor Singular
Value Decomposition (T-SVD). Besides, the
sparsity of a tensor is also measured by its
`1−norm. However, the `1 penalty is essen-
tially biased and thus the result will devi-
ate. In order to sidestep the bias, we pro-
pose a novel non-convex tensor rank surro-
gate function and a novel non-convex spar-
sity measure. In this new setting by using
the concavity instead of the convexity, a ma-
jorization minimization algorithm is further
designed for tensor completion and robust
principal component analysis. Furthermore,
we analyze its theoretical properties. Finally,
the experiments on natural and hyperspec-
tral images demonstrate the efficacy and ef-
ficiency of our proposed method.

TENSOR RECOVERY

PERLIMINARIES

Theorem 0.1 (T-SVD) Suppose A ∈ Rn1×n2×n3 .
Then there exists tensors U ∈ Rn1×n1×n3 ,V ∈
Rn2×n2×n3 and S ∈ Rn1×n2×n3 such that A =
U ∗ S ∗ V∗. Furthermore, U and V are orthogonal,
while S is f-diagonal.

Definition 0.1 (Tensor nuclear norm) Let A =
U ∗S ∗V∗ be the t-SVD ofA, the nuclear norm ofA is
defined as ‖A‖∗ =

∑
i S(i, i, 1) = 1

n3

∑
k S(i, i, k).

Definition 0.2 (SCAD) For some γ > 2 and λ > 0,
the SCAD function is given by

ϕSCAD
λ,γ (t) =


λ|t| if|t| ≤ λ,
γλ|t|−0.5(t2+λ2)

γ−1
ifλ < |t| < γλ,

γ+1
2
λ2 if|t| > γλ.

Definition 0.3 (MCP) For some γ > 1 and λ > 0,
the MCP function is given by

ϕMCP
λ,γ (t) =

{
λ|t| − t2

2γ
if|t| < γλ,

γλ2

2
if|t| ≥ γλ.

RESULTS

PROPOSED
The novel tensor sparsity measure is defined as Φλ,γ(A) =

∑n1
i=1

∑n2
j=1

∑n3
k=1 ϕλ,γ(Aijk).

SupposeA has t-SVDA = U ∗S ∗V∗, we define the γ−norm ofA as ‖A‖γ = 1
n3

∑
i,k ϕ1,γ(S(i, i, k)).

TENSOR COMPLETION
Given a partially observed tensor O ∈

Rn1×n2×n3 ,Based on low rank assumption, tensor
completion can be modeled as

min
X

rank(X ) s.t. OΩ = XΩ.

Use the proposed tensor γ−norm to replace
“rank” :

min
X
‖X‖γ s.t. OΩ = XΩ.

Majorization Minimization:

min
X

Qγ(X|X old) s.t. OΩ = XΩ.

TENSOR RPCA
Given a tensor X , the goal of robust PCA is to

decompose X into two parts: low-rank tensor L
and sparse tensor E . This problem can be formu-
lated as

min
L,E

rank(L) + ‖E‖0 s.t. L+ E = X .

Apply the proposed novel sparsity measure and
tensor γ−norm, we obtain

min
L,E
‖L‖γ1 + Φλ,γ2(E) s.t. L+ E = X .

Majorization minimization:

min
L,E

Qγ1(L|Lold) +Qλ,γ2(E|Eold) s.t. L+ E = X .


