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ABSTRACT

Tensor completion and robust principal
component analysis have been widely used

TAO LI, JINWEN MA

RESULTS

TABLE 1
TENSOR COMPLETION PERFORMANCES EVALUATION ON NATURAL IMAGES UNDER VARYING SAMPLING RATES.

T-SVD BASED NON-CONVEX TENSOR
COMPLETION AND ROBUST PRINCIPAL
COMPONENT ANALYSIS

in machine learning while the key problem y 20% 40% 60% 80% .
ethod time (s)
relies on the minimization of a tensor rank PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM
: : SILRTC  23.59 0.798 0.822 27.987 0.899 0915 3224 0.951 0.964 37.47 0.977 0.988  19.95
that is VAELLY) Challengmg. A common el HaLRTC  23.82 0.797 0.828 28.39 0.902 0920 33.038 0.953 0.968 39.27 0.978 0.991  31.32
to tackle this difficulty 1s to approximate FBCP 24.08 0.668 0.794 26.40 0.753 0.837 27.35 0.799 0.857 27.71 0.82  0.865 103.68
, , t-SVD 24.13 0.764 0.835 29.703 0.893 0931 36.03 0.950 0.977 4504 0969 0.992  33.47
the tensor rank with the ¢; —norm of sin- ¢TNN 2530 0.841 0.864 30.50 0923 0943 3627 0952 0978 4414 0967 0991  3.03
gular values based on its Tensor Singular LRTCpep 25.70 0.845 0.869 31.06 0.927 0946 36.87 0959 0.980 4546 0.973 0993  3.79
. , LRTC,.oq 25.70 0.844 0869 31.04 0926 0946 36.84 0959 0980 4545 0973 0.993  3.83
Value Decomposition (T-SVD). Besides, the
sparsity of a tensor is also measured by its TABLE N

81 —Nnorm However the 61 penalty ].S essen- TENSOR COMPLETION PERFORMANCES EVALUATION ON HYPERSPECTRAL IMAGES UNDER VARYING SAMPLING RATES. THE UNIT IS 10~ 4 FOR MSE.
* J

tially biased and thus the result will devi- Vet 20% 40% 60% 80% ime (&
ate. In order to Sidestep the bias, we pro- PSNR MSE ERGAS PSNR MSE ERGAS PSNR MSE ERGAS PSNR MSE  ERGAS
_ _ SILRTC  41.71 470 30912 4546 195 21524 49.14 0827 14.412 52.86 0.354 10.341  42.21
pos€ a novel non-convex tensor rank surro HaLRTC  42.11 453 29.626 4595 190 20.556 49.79 0.801 13.514 53.67 0.342  9.660 53.11
gate function and a novel Nnon-convex Spar_ FBCP 37.09 14.47 52.931 43.25 3.80 29.318 46.00 2.225 22.344 46.67 2.011 20.688 210.18
, , , , -SVD 4164 5.10 31.835 45.52 2.12  22.142 4942 0886 14.685 53.49 0365 10.157 224.21
Slty measure. In this new settmg by using t-TNN 42.46 3.81 28.702 46.07 1.60 20.135 49.82 0.667 13.272 53.61 0.290 9515 47.29
the concavity instead of the convexity 3 ma- LRTCpep, 42.91 3.58 27.799 46.75 151 19.684 5047 0665 13.293 54.11 0316 9642  70.95
/ LRTC,...q 4291 358 27.804 46.76 151 19684 5046 0666 13208 b54.11 0316 9642 71.14

jorization minimization algorithm is further
designed for tensor completion and robust
principal component analysis. Furthermore,
we analyze its theoretical properties. Finally,
the experiments on natural and hyperspec-
tral images demonstrate the efficacy and ef-
ficiency of our proposed method.

Original image Corrupted image

§ et
|
o ol | +| o o of
e ool e | ol
L I B ‘@ o 1* =
* ‘ % * [ I I | | | [ 1
B RPCA o
TRPCA
Corrupted tensor Low-rank tensor Sparse tensor m—TRPCA_
TRPCA__ | |
0 3 10 15 20 25 30 35 40 45 30

Theorem 0.1 (T-SVD) Suppose A € R™ *"27"3,
Then there exists tensors U € R"17"M17x"3) ¢
R"2x"2X73 gpnd S € R™7"2%"3 gych that A =
U xS x V™. Furthermore, U and V are orthogonal,
while S 1s f-diagonal.

Fig. 5. Comparison of PSNR values obtained by RPCA, TRPCA, TRPCAmcp, TRPCA4.,q4 on randomly selected 50 images.

The novel tensor sparsity measure is defined as ®x (A) = > 2, > 2, > 1% oa 4 (Aijk ).
Suppose A has t-SVD A = U xS+ V", we define the y—norm of A as || All, = =37,  ©1,4(S(i,4, k)).

Definition 0.1 (Tensor nuclear norm) Let A =
U xS V" be the t-SVD of A, the nuclear norm of Ais
defined as || All« = 32, S(4,4,1) = = >, S(4,4, k).

T on

TENSOR COMPLETION

Definition 0.2 (SCAD) For some~v > 2 and A > 0,
the SCAD function is given by

Given a partially observed tensor O &
R™t*"2%"3 Based on low rank assumption, tensor

Given a tensor X, the goal of robust PCA is to
decompose & into two parts: low-rank tensor £

o Alt| . if[t] < A, completion can be modeled as and sparse tensor £. This problem can be formu-
Ao (t) = WMﬂ_gf(lt A7) if A < [t| < A, | lated as
1L )2 if |t > Y. min rank(X) s.t. Oq = Xq.

I?iglrank(ﬁ) +||€]lo st. L+E=X.

Definition 0.3 (MCP) For some v > 1 and A > O, Use the proposed tensor y—norm to replace

the MICP function is given by “rank” : Apply the proposed novel sparsity measure and
. tensor y—norm, we obtain
2 p—
o At — 2 if[t] < YA, m)énH?(H7 s.t. Oq = Xq. |
=900 T min [[£]]y, +®rq,(€) st LAE=X.
2 t] 2 7A. Majorization Minimization: ’

. old Majorization minimization:
m)én ny(‘)q;\f ) s.t. Oq = Xo.

min Q-, (L|1L) + Qx. o (E|EYY) st L+E=X.



